Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
import gradio as gr | |
import torch | |
from transformers import pipeline | |
import librosa | |
import soundfile as sf | |
import os | |
import spaces # Ensure spaces is imported | |
def split_audio(audio_data, sr, chunk_duration=30): | |
"""Split audio into chunks of chunk_duration seconds.""" | |
chunks = [] | |
for start in range(0, len(audio_data), int(chunk_duration * sr)): | |
end = start + int(chunk_duration * sr) | |
chunks.append(audio_data[start:end]) | |
return chunks | |
def transcribe_long_audio(audio_path, transcriber, chunk_duration=30): | |
"""Transcribe long audio by splitting into smaller chunks.""" | |
try: | |
# Load the audio file | |
audio_data, sr = librosa.load(audio_path, sr=None) | |
chunks = split_audio(audio_data, sr, chunk_duration) | |
transcriptions = [] | |
for i, chunk in enumerate(chunks): | |
chunk_path = f"temp_chunk_{i}.wav" | |
sf.write(chunk_path, chunk, sr) # Save chunk as WAV | |
transcription = transcriber(chunk_path)["text"] | |
transcriptions.append(transcription) | |
os.remove(chunk_path) # Cleanup temp files | |
return " ".join(transcriptions) | |
except Exception as e: | |
print(f"Error in transcribe_long_audio: {e}") | |
return f"Error processing audio: {e}" | |
def main(): | |
device = 0 if torch.cuda.is_available() else -1 | |
try: | |
transcriber = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device) | |
summarizer = pipeline("summarization", model="facebook/bart-large-cnn") | |
except Exception as e: | |
print(f"Error loading models: {e}") | |
raise | |
def process_audio(audio_input): | |
try: | |
print(f"Processing uploaded audio: {audio_input}") | |
if not isinstance(audio_input, str): | |
raise ValueError("Invalid input type. Please upload a valid audio file.") | |
if os.path.isdir(audio_input): | |
raise ValueError("Input is a directory, not a file.") | |
# Transcribe the uploaded audio file | |
transcription = transcribe_long_audio(audio_input, transcriber, chunk_duration=30) | |
summary = summarizer(transcription, max_length=50, min_length=10, do_sample=False)[0]["summary_text"] | |
return transcription, summary, audio_input | |
except Exception as e: | |
print(f"Error in process_audio: {e}") | |
return f"Error processing audio: {e}", "", "" | |
with gr.Blocks() as interface: | |
with gr.Row(): | |
with gr.Column(): | |
# Only support file uploads | |
audio_input = gr.Audio(type="filepath", label="Upload Audio File") | |
process_button = gr.Button("Transcribe Audio") | |
with gr.Column(): | |
transcription_output = gr.Textbox(label="Transcription", lines=10) | |
summary_output = gr.Textbox(label="Summary", lines=5) | |
process_button.click( | |
process_audio, | |
inputs=[audio_input], | |
outputs=[transcription_output, summary_output] | |
) | |
interface.launch(share=False) | |
if __name__ == "__main__": | |
main() | |