Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,109 +1,259 @@
|
|
1 |
-
|
2 |
-
import
|
3 |
-
|
|
|
4 |
import traceback
|
5 |
from io import BytesIO
|
6 |
-
from typing import Tuple
|
|
|
7 |
|
|
|
8 |
import gradio as gr
|
9 |
import requests
|
10 |
import torch
|
11 |
from huggingface_hub import snapshot_download
|
12 |
-
from PIL import Image
|
13 |
from qwen_vl_utils import process_vision_info
|
14 |
-
from transformers import AutoModelForCausalLM, AutoProcessor
|
15 |
-
|
16 |
-
#
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
)
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
52 |
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
return Image.open(x).convert("RGB")
|
61 |
-
raise ValueError(f"Unsupported input: {type(x)}")
|
62 |
-
|
63 |
-
def run_ocr(img: Image.Image) -> str:
|
64 |
-
messages = [{"role":"user","content":[{"type":"image","image":img},{"type":"text","text":OCR_PROMPT}]}]
|
65 |
-
text = ocr_processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
66 |
image_inputs, video_inputs = process_vision_info(messages)
|
67 |
-
inputs =
|
68 |
-
with torch.no_grad():
|
69 |
-
out = ocr_model.generate(**inputs, max_new_tokens=4096, do_sample=False, temperature=0.0)
|
70 |
-
trimmed = [o[len(i):] for i, o in zip(inputs["input_ids"], out)]
|
71 |
-
s = ocr_processor.batch_decode(trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
72 |
-
return s.strip()
|
73 |
-
|
74 |
-
def convert_pre_to_modern(txt: str) -> str:
|
75 |
-
messages = [{"role":"system","content":SYSTEM_MSG},{"role":"user","content":txt}]
|
76 |
-
prompt = tok.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
77 |
-
inputs = tok([prompt], return_tensors="pt").to(conv_model.device)
|
78 |
with torch.no_grad():
|
79 |
-
|
80 |
-
|
81 |
-
|
|
|
82 |
|
83 |
-
|
84 |
-
|
|
|
|
|
85 |
try:
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import spaces
|
2 |
+
import json
|
3 |
+
import math
|
4 |
+
import os
|
5 |
import traceback
|
6 |
from io import BytesIO
|
7 |
+
from typing import Any, Dict, List, Optional, Tuple
|
8 |
+
import re
|
9 |
|
10 |
+
import fitz # PyMuPDF
|
11 |
import gradio as gr
|
12 |
import requests
|
13 |
import torch
|
14 |
from huggingface_hub import snapshot_download
|
15 |
+
from PIL import Image, ImageDraw, ImageFont
|
16 |
from qwen_vl_utils import process_vision_info
|
17 |
+
from transformers import AutoModelForCausalLM, AutoProcessor
|
18 |
+
|
19 |
+
# Constants
|
20 |
+
MIN_PIXELS = 3136
|
21 |
+
MAX_PIXELS = 11289600
|
22 |
+
IMAGE_FACTOR = 28
|
23 |
+
|
24 |
+
# Prompts
|
25 |
+
prompt = """Please output the layout information from the PDF image, including each layout element's bbox, its category, and the corresponding text content within the bbox.
|
26 |
+
|
27 |
+
1. Bbox format: [x1, y1, x2, y2]
|
28 |
+
2. Layout Categories: ['Caption', 'Footnote', 'Formula', 'List-item', 'Page-footer', 'Page-header', 'Picture', 'Section-header', 'Table', 'Text', 'Title'].
|
29 |
+
3. Text Extraction & Formatting Rules:
|
30 |
+
- Picture: Omit text.
|
31 |
+
- Formula: Format as LaTeX.
|
32 |
+
- Table: Format as HTML.
|
33 |
+
- Others: Format as Markdown.
|
34 |
+
4. Output must be the original text with no translation, sorted in human reading order.
|
35 |
+
5. Final output: single JSON object.
|
36 |
+
"""
|
37 |
+
|
38 |
+
# Utility functions
|
39 |
+
def round_by_factor(number: int, factor: int) -> int:
|
40 |
+
return round(number / factor) * factor
|
41 |
+
|
42 |
+
def smart_resize(height: int, width: int, factor: int = 28,
|
43 |
+
min_pixels: int = 3136, max_pixels: int = 11289600):
|
44 |
+
if max(height, width) / min(height, width) > 200:
|
45 |
+
raise ValueError("absolute aspect ratio must be smaller than 200")
|
46 |
+
h_bar = max(factor, round_by_factor(height, factor))
|
47 |
+
w_bar = max(factor, round_by_factor(width, factor))
|
48 |
+
if h_bar * w_bar > max_pixels:
|
49 |
+
beta = math.sqrt((height * width) / max_pixels)
|
50 |
+
h_bar = round_by_factor(height / beta, factor)
|
51 |
+
w_bar = round_by_factor(width / beta, factor)
|
52 |
+
elif h_bar * w_bar < min_pixels:
|
53 |
+
beta = math.sqrt(min_pixels / (height * width))
|
54 |
+
h_bar = round_by_factor(height * beta, factor)
|
55 |
+
w_bar = round_by_factor(width * beta, factor)
|
56 |
+
return h_bar, w_bar
|
57 |
+
|
58 |
+
def fetch_image(image_input, min_pixels=None, max_pixels=None):
|
59 |
+
if isinstance(image_input, str):
|
60 |
+
if image_input.startswith(("http://", "https://")):
|
61 |
+
response = requests.get(image_input)
|
62 |
+
image = Image.open(BytesIO(response.content)).convert('RGB')
|
63 |
+
else:
|
64 |
+
image = Image.open(image_input).convert('RGB')
|
65 |
+
elif isinstance(image_input, Image.Image):
|
66 |
+
image = image_input.convert('RGB')
|
67 |
+
else:
|
68 |
+
raise ValueError(f"Invalid image input type: {type(image_input)}")
|
69 |
+
if min_pixels is not None or max_pixels is not None:
|
70 |
+
min_pixels = min_pixels or MIN_PIXELS
|
71 |
+
max_pixels = max_pixels or MAX_PIXELS
|
72 |
+
height, width = smart_resize(image.height, image.width, factor=IMAGE_FACTOR,
|
73 |
+
min_pixels=min_pixels, max_pixels=max_pixels)
|
74 |
+
image = image.resize((width, height), Image.LANCZOS)
|
75 |
+
return image
|
76 |
+
|
77 |
+
def load_images_from_pdf(pdf_path: str) -> List[Image.Image]:
|
78 |
+
images = []
|
79 |
+
try:
|
80 |
+
pdf_document = fitz.open(pdf_path)
|
81 |
+
for page_num in range(len(pdf_document)):
|
82 |
+
page = pdf_document.load_page(page_num)
|
83 |
+
mat = fitz.Matrix(2.0, 2.0)
|
84 |
+
pix = page.get_pixmap(matrix=mat)
|
85 |
+
img_data = pix.tobytes("ppm")
|
86 |
+
image = Image.open(BytesIO(img_data)).convert('RGB')
|
87 |
+
images.append(image)
|
88 |
+
pdf_document.close()
|
89 |
+
except Exception as e:
|
90 |
+
print(f"Error loading PDF: {e}")
|
91 |
+
return images
|
92 |
+
|
93 |
+
def is_arabic_text(text: str) -> bool:
|
94 |
+
if not text:
|
95 |
+
return False
|
96 |
+
header_pattern = r'^#{1,6}\s+(.+)$'
|
97 |
+
paragraph_pattern = r'^(?!#{1,6}\s|!\[|```|\||\s*[-*+]\s|\s*\d+\.\s)(.+)$'
|
98 |
+
content_text = []
|
99 |
+
for line in text.split('\n'):
|
100 |
+
line = line.strip()
|
101 |
+
if not line:
|
102 |
+
continue
|
103 |
+
header_match = re.match(header_pattern, line, re.MULTILINE)
|
104 |
+
if header_match:
|
105 |
+
content_text.append(header_match.group(1))
|
106 |
+
continue
|
107 |
+
if re.match(paragraph_pattern, line, re.MULTILINE):
|
108 |
+
content_text.append(line)
|
109 |
+
if not content_text:
|
110 |
+
return False
|
111 |
+
combined_text = ' '.join(content_text)
|
112 |
+
arabic_chars = sum(1 for c in combined_text if '\u0600' <= c <= '\u06FF' or '\u0750' <= c <= '\u077F' or '\u08A0' <= c <= '\u08FF')
|
113 |
+
total_chars = sum(1 for c in combined_text if c.isalpha())
|
114 |
+
return total_chars > 0 and (arabic_chars / total_chars) > 0.5
|
115 |
+
|
116 |
+
def layoutjson2md(image: Image.Image, layout_data: List[Dict], text_key='text') -> str:
|
117 |
+
import base64
|
118 |
+
markdown_lines = []
|
119 |
+
try:
|
120 |
+
sorted_items = sorted(layout_data, key=lambda x: (x.get('bbox', [0, 0, 0, 0])[1], x.get('bbox', [0, 0, 0, 0])[0]))
|
121 |
+
for item in sorted_items:
|
122 |
+
category = item.get('category', '')
|
123 |
+
text = item.get(text_key, '')
|
124 |
+
if category == 'Picture':
|
125 |
+
markdown_lines.append("\n")
|
126 |
+
elif not text:
|
127 |
+
continue
|
128 |
+
elif category == 'Title':
|
129 |
+
markdown_lines.append(f"# {text}\n")
|
130 |
+
elif category == 'Section-header':
|
131 |
+
markdown_lines.append(f"## {text}\n")
|
132 |
+
elif category == 'Text':
|
133 |
+
markdown_lines.append(f"{text}\n")
|
134 |
+
elif category == 'List-item':
|
135 |
+
markdown_lines.append(f"- {text}\n")
|
136 |
+
elif category == 'Table':
|
137 |
+
markdown_lines.append(f"{text}\n")
|
138 |
+
elif category == 'Formula':
|
139 |
+
markdown_lines.append(f"$$\n{text}\n$$\n")
|
140 |
+
elif category == 'Caption':
|
141 |
+
markdown_lines.append(f"*{text}*\n")
|
142 |
+
elif category == 'Footnote':
|
143 |
+
markdown_lines.append(f"^{text}^\n")
|
144 |
+
except Exception as e:
|
145 |
+
print(f"Error converting to markdown: {e}")
|
146 |
+
return str(layout_data)
|
147 |
+
return "\n".join(markdown_lines)
|
148 |
|
149 |
+
# Model
|
150 |
+
model_id = "rednote-hilab/dots.ocr"
|
151 |
+
model_path = "./models/dots-ocr-local"
|
152 |
+
snapshot_download(repo_id=model_id, local_dir=model_path, local_dir_use_symlinks=False)
|
153 |
+
model = AutoModelForCausalLM.from_pretrained(model_path, attn_implementation="flash_attention_2",
|
154 |
+
torch_dtype=torch.bfloat16, device_map="auto", trust_remote_code=True)
|
155 |
+
processor = AutoProcessor.from_pretrained(model_path, trust_remote_code=True)
|
156 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
157 |
|
158 |
+
# State
|
159 |
+
pdf_cache = {"images": [], "current_page": 0, "total_pages": 0, "file_type": None, "is_parsed": False, "results": []}
|
160 |
+
|
161 |
+
@spaces.GPU()
|
162 |
+
def inference(image: Image.Image, prompt: str, max_new_tokens=24000) -> str:
|
163 |
+
messages = [{"role": "user", "content": [{"type": "image", "image": image}, {"type": "text", "text": prompt}]}]
|
164 |
+
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
165 |
image_inputs, video_inputs = process_vision_info(messages)
|
166 |
+
inputs = processor(text=[text], images=image_inputs, videos=video_inputs, padding=True, return_tensors="pt").to(device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
167 |
with torch.no_grad():
|
168 |
+
generated_ids = model.generate(**inputs, max_new_tokens=max_new_tokens, do_sample=False, temperature=0.1)
|
169 |
+
generated_ids_trimmed = [out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)]
|
170 |
+
output_text = processor.batch_decode(generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False)
|
171 |
+
return output_text[0] if output_text else ""
|
172 |
|
173 |
+
def process_image(image: Image.Image, min_pixels=None, max_pixels=None):
|
174 |
+
if min_pixels is not None or max_pixels is not None:
|
175 |
+
image = fetch_image(image, min_pixels=min_pixels, max_pixels=max_pixels)
|
176 |
+
raw_output = inference(image, prompt)
|
177 |
try:
|
178 |
+
layout_data = json.loads(raw_output)
|
179 |
+
return layoutjson2md(image, layout_data), layout_data
|
180 |
+
except json.JSONDecodeError:
|
181 |
+
return raw_output, None
|
182 |
+
|
183 |
+
def load_file_for_preview(file_path: str):
|
184 |
+
global pdf_cache
|
185 |
+
if not file_path or not os.path.exists(file_path):
|
186 |
+
return None, "No file selected"
|
187 |
+
ext = os.path.splitext(file_path)[1].lower()
|
188 |
+
if ext == '.pdf':
|
189 |
+
images = load_images_from_pdf(file_path)
|
190 |
+
pdf_cache.update({"images": images, "current_page": 0, "total_pages": len(images),
|
191 |
+
"file_type": "pdf", "is_parsed": False, "results": []})
|
192 |
+
return images[0], f"Page 1 / {len(images)}"
|
193 |
+
else:
|
194 |
+
img = Image.open(file_path).convert('RGB')
|
195 |
+
pdf_cache.update({"images": [img], "current_page": 0, "total_pages": 1,
|
196 |
+
"file_type": "image", "is_parsed": False, "results": []})
|
197 |
+
return img, "Page 1 / 1"
|
198 |
+
|
199 |
+
def turn_page(direction: str):
|
200 |
+
global pdf_cache
|
201 |
+
if not pdf_cache["images"]:
|
202 |
+
return None, '<div class="page-info">No file loaded</div>', "No results yet"
|
203 |
+
if direction == "prev":
|
204 |
+
pdf_cache["current_page"] = max(0, pdf_cache["current_page"] - 1)
|
205 |
+
elif direction == "next":
|
206 |
+
pdf_cache["current_page"] = min(pdf_cache["total_pages"] - 1, pdf_cache["current_page"] + 1)
|
207 |
+
idx = pdf_cache["current_page"]
|
208 |
+
img = pdf_cache["images"][idx]
|
209 |
+
page_info_html = f'<div class="page-info">Page {idx + 1} / {pdf_cache["total_pages"]}</div>'
|
210 |
+
markdown_content = "Page not processed yet"
|
211 |
+
if pdf_cache["is_parsed"] and idx < len(pdf_cache["results"]):
|
212 |
+
markdown_content = pdf_cache["results"][idx]
|
213 |
+
if is_arabic_text(markdown_content):
|
214 |
+
markdown_content = gr.update(value=markdown_content, rtl=True)
|
215 |
+
return img, page_info_html, markdown_content
|
216 |
+
|
217 |
+
def create_gradio_interface():
|
218 |
+
css = ".page-info {text-align: center;padding: 8px 16px;border-radius: 20px;font-weight: bold;margin: 10px 0;}"
|
219 |
+
with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
|
220 |
+
gr.HTML("<h1 style='text-align:center'>🔍 Dot-OCR - Extracted Content Only</h1>")
|
221 |
+
with gr.Row():
|
222 |
+
with gr.Column(scale=1):
|
223 |
+
file_input = gr.File(label="Upload Image or PDF", file_types=[".jpg", ".jpeg", ".png", ".bmp", ".tiff", ".pdf"], type="filepath")
|
224 |
+
image_preview = gr.Image(label="Preview", type="pil", interactive=False, height=300)
|
225 |
+
with gr.Row():
|
226 |
+
prev_page_btn = gr.Button("◀ Previous")
|
227 |
+
page_info = gr.HTML('<div class="page-info">No file loaded</div>')
|
228 |
+
next_page_btn = gr.Button("Next ▶")
|
229 |
+
process_btn = gr.Button("🚀 Process Document", variant="primary")
|
230 |
+
clear_btn = gr.Button("🗑️ Clear All", variant="secondary")
|
231 |
+
with gr.Column(scale=2):
|
232 |
+
markdown_output = gr.Markdown(value="Click 'Process Document' to see extracted content...", height=500)
|
233 |
+
file_input.change(load_file_for_preview, inputs=file_input, outputs=[image_preview, page_info])
|
234 |
+
prev_page_btn.click(lambda: turn_page("prev"), outputs=[image_preview, page_info, markdown_output])
|
235 |
+
next_page_btn.click(lambda: turn_page("next"), outputs=[image_preview, page_info, markdown_output])
|
236 |
+
process_btn.click(lambda f: _process_document(f), inputs=file_input, outputs=[markdown_output])
|
237 |
+
clear_btn.click(lambda: (None, None, '<div class="page-info">No file loaded</div>', "Click 'Process Document' to see extracted content..."),
|
238 |
+
outputs=[file_input, image_preview, page_info, markdown_output])
|
239 |
+
return demo
|
240 |
+
|
241 |
+
def _process_document(file_path):
|
242 |
+
global pdf_cache
|
243 |
+
if not file_path:
|
244 |
+
return "Please upload a file first."
|
245 |
+
img, _ = load_file_for_preview(file_path)
|
246 |
+
results = []
|
247 |
+
for page_img in pdf_cache["images"]:
|
248 |
+
md_content, _ = process_image(page_img)
|
249 |
+
results.append(md_content)
|
250 |
+
pdf_cache["results"] = results
|
251 |
+
pdf_cache["is_parsed"] = True
|
252 |
+
combined_md = "\n\n---\n\n".join(results)
|
253 |
+
if is_arabic_text(combined_md):
|
254 |
+
return gr.update(value=combined_md, rtl=True)
|
255 |
+
return combined_md
|
256 |
+
|
257 |
+
if __name__ == "__main__":
|
258 |
+
demo = create_gradio_interface()
|
259 |
+
demo.queue(max_size=10).launch(server_name="0.0.0.0", server_port=7860)
|