Commit
·
ebc2961
1
Parent(s):
c49d60b
add check validity for hf token
Browse files- app_text_classification.py +28 -3
- fetch_utils.py +5 -4
- temp_log +0 -1
- text_classification.py +15 -4
- text_classification_ui_helpers.py +7 -4
- wordings.py +20 -11
app_text_classification.py
CHANGED
|
@@ -11,7 +11,19 @@ from text_classification_ui_helpers import (
|
|
| 11 |
try_submit,
|
| 12 |
write_column_mapping_to_config,
|
| 13 |
)
|
| 14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
MAX_LABELS = 40
|
| 17 |
MAX_FEATURES = 20
|
|
@@ -28,7 +40,7 @@ def get_demo():
|
|
| 28 |
)
|
| 29 |
with gr.Row():
|
| 30 |
model_id_input = gr.Textbox(
|
| 31 |
-
label="Hugging Face
|
| 32 |
placeholder=EXAMPLE_MODEL_ID + " (press enter to confirm)",
|
| 33 |
)
|
| 34 |
|
|
@@ -89,6 +101,13 @@ def get_demo():
|
|
| 89 |
visible=True,
|
| 90 |
interactive=True,
|
| 91 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 92 |
|
| 93 |
with gr.Accordion(label="Scanner Advance Config (optional)", open=False):
|
| 94 |
scanners = gr.CheckboxGroup(label="Scan Settings", visible=True)
|
|
@@ -96,7 +115,7 @@ def get_demo():
|
|
| 96 |
@gr.on(triggers=[uid_label.change], inputs=[uid_label], outputs=[scanners])
|
| 97 |
def get_scanners(uid):
|
| 98 |
selected = read_scanners(uid)
|
| 99 |
-
#
|
| 100 |
# Reason: data_leakage barely raises any issues and takes too many requests
|
| 101 |
# when using inference API, causing rate limit error
|
| 102 |
scan_config = selected + ["data_leakage"]
|
|
@@ -225,6 +244,12 @@ def get_demo():
|
|
| 225 |
return gr.update(interactive=False)
|
| 226 |
if not column_mapping_accordion.visible:
|
| 227 |
return gr.update(interactive=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 228 |
return gr.update(interactive=True)
|
| 229 |
|
| 230 |
gr.on(
|
|
|
|
| 11 |
try_submit,
|
| 12 |
write_column_mapping_to_config,
|
| 13 |
)
|
| 14 |
+
|
| 15 |
+
from text_classification import (
|
| 16 |
+
get_example_prediction,
|
| 17 |
+
check_hf_token_validity,
|
| 18 |
+
HuggingFaceInferenceAPIResponse
|
| 19 |
+
)
|
| 20 |
+
from wordings import (
|
| 21 |
+
CONFIRM_MAPPING_DETAILS_MD,
|
| 22 |
+
INTRODUCTION_MD,
|
| 23 |
+
USE_INFERENCE_API_TIP,
|
| 24 |
+
CHECK_LOG_SECTION_RAW,
|
| 25 |
+
HF_TOKEN_INVALID_STYLED
|
| 26 |
+
)
|
| 27 |
|
| 28 |
MAX_LABELS = 40
|
| 29 |
MAX_FEATURES = 20
|
|
|
|
| 40 |
)
|
| 41 |
with gr.Row():
|
| 42 |
model_id_input = gr.Textbox(
|
| 43 |
+
label="Hugging Face model id",
|
| 44 |
placeholder=EXAMPLE_MODEL_ID + " (press enter to confirm)",
|
| 45 |
)
|
| 46 |
|
|
|
|
| 101 |
visible=True,
|
| 102 |
interactive=True,
|
| 103 |
)
|
| 104 |
+
inference_token_info = gr.HTML(value=HF_TOKEN_INVALID_STYLED, visible=False)
|
| 105 |
+
|
| 106 |
+
inference_token.change(
|
| 107 |
+
lambda token: gr.update(visible=lambda: check_hf_token_validity(token)),
|
| 108 |
+
inputs=[inference_token],
|
| 109 |
+
outputs=[inference_token_info],
|
| 110 |
+
)
|
| 111 |
|
| 112 |
with gr.Accordion(label="Scanner Advance Config (optional)", open=False):
|
| 113 |
scanners = gr.CheckboxGroup(label="Scan Settings", visible=True)
|
|
|
|
| 115 |
@gr.on(triggers=[uid_label.change], inputs=[uid_label], outputs=[scanners])
|
| 116 |
def get_scanners(uid):
|
| 117 |
selected = read_scanners(uid)
|
| 118 |
+
# we remove data_leakage from the default scanners
|
| 119 |
# Reason: data_leakage barely raises any issues and takes too many requests
|
| 120 |
# when using inference API, causing rate limit error
|
| 121 |
scan_config = selected + ["data_leakage"]
|
|
|
|
| 244 |
return gr.update(interactive=False)
|
| 245 |
if not column_mapping_accordion.visible:
|
| 246 |
return gr.update(interactive=False)
|
| 247 |
+
_, prediction_response = get_example_prediction(
|
| 248 |
+
model_id, dataset_id, dataset_config, dataset_split, inference_token
|
| 249 |
+
)
|
| 250 |
+
if not isinstance(prediction_response, HuggingFaceInferenceAPIResponse):
|
| 251 |
+
gr.warning("Your HF token is invalid. Please check your token.")
|
| 252 |
+
return gr.update(interactive=False)
|
| 253 |
return gr.update(interactive=True)
|
| 254 |
|
| 255 |
gr.on(
|
fetch_utils.py
CHANGED
|
@@ -14,18 +14,19 @@ def check_dataset_and_get_config(dataset_id):
|
|
| 14 |
|
| 15 |
def check_dataset_and_get_split(dataset_id, dataset_config):
|
| 16 |
try:
|
| 17 |
-
|
| 18 |
except Exception as e:
|
| 19 |
# Dataset may not exist
|
| 20 |
logging.warning(
|
| 21 |
f"Failed to load dataset {dataset_id} with config {dataset_config}: {e}"
|
| 22 |
)
|
| 23 |
return None
|
| 24 |
-
|
|
|
|
| 25 |
return splits
|
| 26 |
-
|
| 27 |
# Dataset has no splits
|
| 28 |
logging.warning(
|
| 29 |
-
f"Dataset {dataset_id} with config {dataset_config} has no splits"
|
| 30 |
)
|
| 31 |
return None
|
|
|
|
| 14 |
|
| 15 |
def check_dataset_and_get_split(dataset_id, dataset_config):
|
| 16 |
try:
|
| 17 |
+
ds = datasets.load_dataset(dataset_id, dataset_config, trust_remote_code=True)
|
| 18 |
except Exception as e:
|
| 19 |
# Dataset may not exist
|
| 20 |
logging.warning(
|
| 21 |
f"Failed to load dataset {dataset_id} with config {dataset_config}: {e}"
|
| 22 |
)
|
| 23 |
return None
|
| 24 |
+
try:
|
| 25 |
+
splits = list(ds.keys())
|
| 26 |
return splits
|
| 27 |
+
except Exception as e:
|
| 28 |
# Dataset has no splits
|
| 29 |
logging.warning(
|
| 30 |
+
f"Dataset {dataset_id} with config {dataset_config} has no splits: {e}"
|
| 31 |
)
|
| 32 |
return None
|
temp_log
DELETED
|
@@ -1 +0,0 @@
|
|
| 1 |
-
./tmp/53513338-9dfa-4f6e-bea4-63857a9d93a6.log
|
|
|
|
|
|
text_classification.py
CHANGED
|
@@ -272,7 +272,7 @@ def select_the_first_string_column(ds):
|
|
| 272 |
return None
|
| 273 |
|
| 274 |
|
| 275 |
-
def get_example_prediction(model_id, dataset_id, dataset_config, dataset_split):
|
| 276 |
# get a sample prediction from the model on the dataset
|
| 277 |
prediction_input = None
|
| 278 |
prediction_result = None
|
|
@@ -284,8 +284,7 @@ def get_example_prediction(model_id, dataset_id, dataset_config, dataset_split):
|
|
| 284 |
prediction_input = ds[0][select_the_first_string_column(ds)]
|
| 285 |
else:
|
| 286 |
prediction_input = ds[0]["text"]
|
| 287 |
-
|
| 288 |
-
hf_token = os.environ.get(HF_WRITE_TOKEN, default="")
|
| 289 |
payload = {"inputs": prediction_input, "options": {"use_cache": True}}
|
| 290 |
results = hf_inference_api(model_id, hf_token, payload)
|
| 291 |
|
|
@@ -381,4 +380,16 @@ def text_classification_fix_column_mapping(column_mapping, ppl, d_id, config, sp
|
|
| 381 |
def strip_model_id_from_url(model_id):
|
| 382 |
if model_id.startswith("https://huggingface.co/"):
|
| 383 |
return "/".join(model_id.split("/")[-2])
|
| 384 |
-
return model_id
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 272 |
return None
|
| 273 |
|
| 274 |
|
| 275 |
+
def get_example_prediction(model_id, dataset_id, dataset_config, dataset_split, hf_token):
|
| 276 |
# get a sample prediction from the model on the dataset
|
| 277 |
prediction_input = None
|
| 278 |
prediction_result = None
|
|
|
|
| 284 |
prediction_input = ds[0][select_the_first_string_column(ds)]
|
| 285 |
else:
|
| 286 |
prediction_input = ds[0]["text"]
|
| 287 |
+
|
|
|
|
| 288 |
payload = {"inputs": prediction_input, "options": {"use_cache": True}}
|
| 289 |
results = hf_inference_api(model_id, hf_token, payload)
|
| 290 |
|
|
|
|
| 380 |
def strip_model_id_from_url(model_id):
|
| 381 |
if model_id.startswith("https://huggingface.co/"):
|
| 382 |
return "/".join(model_id.split("/")[-2])
|
| 383 |
+
return model_id
|
| 384 |
+
|
| 385 |
+
def check_hf_token_validity(hf_token):
|
| 386 |
+
if hf_token == "":
|
| 387 |
+
return False
|
| 388 |
+
if not isinstance(hf_token, str):
|
| 389 |
+
return False
|
| 390 |
+
# use inference api to check the token
|
| 391 |
+
payload = {"inputs": "This is a test", "options": {"use_cache": True}}
|
| 392 |
+
response = hf_inference_api("cardiffnlp/twitter-roberta-base-sentiment-latest", hf_token, payload)
|
| 393 |
+
if "error" in response:
|
| 394 |
+
return False
|
| 395 |
+
return True
|
text_classification_ui_helpers.py
CHANGED
|
@@ -27,6 +27,7 @@ from wordings import (
|
|
| 27 |
CHECK_LOG_SECTION_RAW,
|
| 28 |
get_styled_input,
|
| 29 |
)
|
|
|
|
| 30 |
|
| 31 |
MAX_LABELS = 40
|
| 32 |
MAX_FEATURES = 20
|
|
@@ -59,7 +60,9 @@ def check_dataset(dataset_id):
|
|
| 59 |
gr.update(),
|
| 60 |
""
|
| 61 |
)
|
| 62 |
-
splits = datasets.get_dataset_split_names(
|
|
|
|
|
|
|
| 63 |
return (
|
| 64 |
gr.update(choices=configs, value=configs[0], visible=True),
|
| 65 |
gr.update(choices=splits, value=splits[0], visible=True),
|
|
@@ -212,9 +215,11 @@ def align_columns_and_show_prediction(
|
|
| 212 |
dropdown_placement = [
|
| 213 |
gr.Dropdown(visible=False) for _ in range(MAX_LABELS + MAX_FEATURES)
|
| 214 |
]
|
|
|
|
|
|
|
| 215 |
|
| 216 |
prediction_input, prediction_response = get_example_prediction(
|
| 217 |
-
model_id, dataset_id, dataset_config, dataset_split
|
| 218 |
)
|
| 219 |
|
| 220 |
if prediction_input is None or prediction_response is None:
|
|
@@ -255,7 +260,6 @@ def align_columns_and_show_prediction(
|
|
| 255 |
)
|
| 256 |
|
| 257 |
if len(ds_labels) != len(model_labels):
|
| 258 |
-
# gr.Warning(UNMATCHED_MODEL_DATASET)
|
| 259 |
return (
|
| 260 |
gr.update(value=UNMATCHED_MODEL_DATASET_STYLED_ERROR, visible=True),
|
| 261 |
gr.update(visible=False),
|
|
@@ -324,7 +328,6 @@ def construct_label_and_feature_mapping(all_mappings, ds_labels, ds_features):
|
|
| 324 |
feature_mapping = all_mappings["features"]
|
| 325 |
return label_mapping, feature_mapping
|
| 326 |
|
| 327 |
-
|
| 328 |
def try_submit(m_id, d_id, config, split, inference, inference_token, uid):
|
| 329 |
all_mappings = read_column_mapping(uid)
|
| 330 |
check_column_mapping_keys_validity(all_mappings)
|
|
|
|
| 27 |
CHECK_LOG_SECTION_RAW,
|
| 28 |
get_styled_input,
|
| 29 |
)
|
| 30 |
+
import os
|
| 31 |
|
| 32 |
MAX_LABELS = 40
|
| 33 |
MAX_FEATURES = 20
|
|
|
|
| 60 |
gr.update(),
|
| 61 |
""
|
| 62 |
)
|
| 63 |
+
splits = datasets.get_dataset_split_names(
|
| 64 |
+
dataset_id, configs[0], trust_remote_code=True
|
| 65 |
+
)
|
| 66 |
return (
|
| 67 |
gr.update(choices=configs, value=configs[0], visible=True),
|
| 68 |
gr.update(choices=splits, value=splits[0], visible=True),
|
|
|
|
| 215 |
dropdown_placement = [
|
| 216 |
gr.Dropdown(visible=False) for _ in range(MAX_LABELS + MAX_FEATURES)
|
| 217 |
]
|
| 218 |
+
|
| 219 |
+
hf_token = os.environ.get("HF_WRITE_TOKEN", default="")
|
| 220 |
|
| 221 |
prediction_input, prediction_response = get_example_prediction(
|
| 222 |
+
model_id, dataset_id, dataset_config, dataset_split, hf_token
|
| 223 |
)
|
| 224 |
|
| 225 |
if prediction_input is None or prediction_response is None:
|
|
|
|
| 260 |
)
|
| 261 |
|
| 262 |
if len(ds_labels) != len(model_labels):
|
|
|
|
| 263 |
return (
|
| 264 |
gr.update(value=UNMATCHED_MODEL_DATASET_STYLED_ERROR, visible=True),
|
| 265 |
gr.update(visible=False),
|
|
|
|
| 328 |
feature_mapping = all_mappings["features"]
|
| 329 |
return label_mapping, feature_mapping
|
| 330 |
|
|
|
|
| 331 |
def try_submit(m_id, d_id, config, split, inference, inference_token, uid):
|
| 332 |
all_mappings = read_column_mapping(uid)
|
| 333 |
check_column_mapping_keys_validity(all_mappings)
|
wordings.py
CHANGED
|
@@ -2,7 +2,7 @@ INTRODUCTION_MD = """
|
|
| 2 |
<h1 style="text-align: center;">
|
| 3 |
🐢Giskard Evaluator
|
| 4 |
</h1>
|
| 5 |
-
Welcome to Giskard Evaluator Space! Get your report immediately by simply input your model id and dataset id below. Follow our leads and improve your model
|
| 6 |
"""
|
| 7 |
CONFIRM_MAPPING_DETAILS_MD = """
|
| 8 |
<h1 style="text-align: center;">
|
|
@@ -14,11 +14,7 @@ CONFIRM_MAPPING_DETAILS_FAIL_MD = """
|
|
| 14 |
<h1 style="text-align: center;">
|
| 15 |
Confirm Pre-processing Details
|
| 16 |
</h1>
|
| 17 |
-
|
| 18 |
-
"""
|
| 19 |
-
|
| 20 |
-
UNMATCHED_MODEL_DATASET = """
|
| 21 |
-
Model prediction labels do not align with the labels present in the dataset. Please double check your model and dataset.
|
| 22 |
"""
|
| 23 |
|
| 24 |
CONFIRM_MAPPING_DETAILS_FAIL_RAW = """
|
|
@@ -30,7 +26,7 @@ CHECK_CONFIG_OR_SPLIT_RAW = """
|
|
| 30 |
"""
|
| 31 |
|
| 32 |
CHECK_LOG_SECTION_RAW = """
|
| 33 |
-
Your have successfully submitted a Giskard evaluation. Further details are available in the Logs tab
|
| 34 |
"""
|
| 35 |
|
| 36 |
PREDICTION_SAMPLE_MD = """
|
|
@@ -42,7 +38,7 @@ PREDICTION_SAMPLE_MD = """
|
|
| 42 |
|
| 43 |
MAPPING_STYLED_ERROR_WARNING = """
|
| 44 |
<h3 style="text-align: center;color: orange; background-color: #fff0f3; border-radius: 8px; padding: 10px; ">
|
| 45 |
-
|
| 46 |
</h3>
|
| 47 |
"""
|
| 48 |
|
|
@@ -57,18 +53,31 @@ NOT_TEXT_CLASSIFICATION_MODEL_RAW = """
|
|
| 57 |
"""
|
| 58 |
|
| 59 |
USE_INFERENCE_API_TIP = """
|
| 60 |
-
We
|
| 61 |
<a href="https://huggingface.co/docs/api-inference/detailed_parameters#text-classification-task">
|
| 62 |
Hugging Face Inference API
|
| 63 |
</a>
|
| 64 |
for the evaluation,
|
| 65 |
which requires your <a href="https://huggingface.co/settings/tokens">HF token</a>.
|
| 66 |
<br/>
|
| 67 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 68 |
</b>
|
| 69 |
"""
|
| 70 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 71 |
def get_styled_input(input):
|
| 72 |
return f"""<h3 style="text-align: center;color: #4ca154; background-color: #e2fbe8; border-radius: 8px; padding: 10px; ">
|
| 73 |
-
Sample input: {input}
|
| 74 |
</h3>"""
|
|
|
|
| 2 |
<h1 style="text-align: center;">
|
| 3 |
🐢Giskard Evaluator
|
| 4 |
</h1>
|
| 5 |
+
Welcome to Giskard Evaluator Space! Get your report immediately by simply input your model id and dataset id below. Follow our leads and improve your model.
|
| 6 |
"""
|
| 7 |
CONFIRM_MAPPING_DETAILS_MD = """
|
| 8 |
<h1 style="text-align: center;">
|
|
|
|
| 14 |
<h1 style="text-align: center;">
|
| 15 |
Confirm Pre-processing Details
|
| 16 |
</h1>
|
| 17 |
+
Sorry, we cannot align the input/output of your dataset with the model. <b>Pleaser double check your model and dataset.</b>
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
"""
|
| 19 |
|
| 20 |
CONFIRM_MAPPING_DETAILS_FAIL_RAW = """
|
|
|
|
| 26 |
"""
|
| 27 |
|
| 28 |
CHECK_LOG_SECTION_RAW = """
|
| 29 |
+
Your have successfully submitted a Giskard evaluation. Further details are available in the Logs tab. You can find your report will be posted to your model's community discussion.
|
| 30 |
"""
|
| 31 |
|
| 32 |
PREDICTION_SAMPLE_MD = """
|
|
|
|
| 38 |
|
| 39 |
MAPPING_STYLED_ERROR_WARNING = """
|
| 40 |
<h3 style="text-align: center;color: orange; background-color: #fff0f3; border-radius: 8px; padding: 10px; ">
|
| 41 |
+
Sorry, we cannot auto-align the labels/features of your dataset and model. Please double check.
|
| 42 |
</h3>
|
| 43 |
"""
|
| 44 |
|
|
|
|
| 53 |
"""
|
| 54 |
|
| 55 |
USE_INFERENCE_API_TIP = """
|
| 56 |
+
We recommend to use
|
| 57 |
<a href="https://huggingface.co/docs/api-inference/detailed_parameters#text-classification-task">
|
| 58 |
Hugging Face Inference API
|
| 59 |
</a>
|
| 60 |
for the evaluation,
|
| 61 |
which requires your <a href="https://huggingface.co/settings/tokens">HF token</a>.
|
| 62 |
<br/>
|
| 63 |
+
Otherwise, an
|
| 64 |
+
<a href="https://huggingface.co/docs/transformers/main_classes/pipelines#transformers.TextClassificationPipeline">
|
| 65 |
+
HF pipeline
|
| 66 |
+
</a>
|
| 67 |
+
will be created and run in this Space. It takes more time to get the result.
|
| 68 |
+
<br/>
|
| 69 |
+
<b>
|
| 70 |
+
Do not worry, your HF token is only used in this Space for your evaluation.
|
| 71 |
</b>
|
| 72 |
"""
|
| 73 |
|
| 74 |
+
HF_TOKEN_INVALID_STYLED= """
|
| 75 |
+
<h3 style="text-align: center;color: #fa5f5f; background-color: #fbe2e2; border-radius: 8px; padding: 10px; ">
|
| 76 |
+
Your Hugging Face token is invalid. Please double check your token.
|
| 77 |
+
</h3>
|
| 78 |
+
"""
|
| 79 |
+
|
| 80 |
def get_styled_input(input):
|
| 81 |
return f"""<h3 style="text-align: center;color: #4ca154; background-color: #e2fbe8; border-radius: 8px; padding: 10px; ">
|
| 82 |
+
Your model and dataset have been validated! <br /> Sample input: {input}
|
| 83 |
</h3>"""
|