Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import cv2 | |
import numpy as np | |
import torch | |
import gradio as gr | |
import spaces | |
from glob import glob | |
from typing import Optional, Tuple | |
from PIL import Image | |
from gradio_imageslider import ImageSlider | |
from transformers import AutoModelForImageSegmentation | |
from torchvision import transforms | |
torch.set_float32_matmul_precision('high') | |
torch.jit.script = lambda f: f | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
def array_to_pil_image(image: np.ndarray, size: Tuple[int, int] = (1024, 1024)) -> Image.Image: | |
image = cv2.resize(image, size, interpolation=cv2.INTER_LINEAR) | |
image = Image.fromarray(image).convert('RGB') | |
return image | |
class ImagePreprocessor(): | |
def __init__(self, resolution: Tuple[int, int] = (1024, 1024)) -> None: | |
self.transform_image = transforms.Compose([ | |
# transforms.Resize(resolution), # 1. keep consistent with the cv2.resize used in training 2. redundant with that in path_to_image() | |
transforms.ToTensor(), | |
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), | |
]) | |
def proc(self, image: Image.Image) -> torch.Tensor: | |
image = self.transform_image(image) | |
return image | |
usage_to_weights_file = { | |
'General': 'BiRefNet', | |
'General-Lite': 'BiRefNet_T', | |
'Portrait': 'BiRefNet-portrait', | |
'DIS': 'BiRefNet-DIS5K', | |
'HRSOD': 'BiRefNet-HRSOD', | |
'COD': 'BiRefNet-COD', | |
'DIS-TR_TEs': 'BiRefNet-DIS5K-TR_TEs' | |
} | |
birefnet = AutoModelForImageSegmentation.from_pretrained('/'.join(('zhengpeng7', usage_to_weights_file['General'])), trust_remote_code=True) | |
birefnet.to(device) | |
birefnet.eval() | |
def predict( | |
image: np.ndarray, | |
resolution: str, | |
weights_file: Optional[str] | |
) -> Tuple[np.ndarray, np.ndarray]: | |
global birefnet | |
# Load BiRefNet with chosen weights | |
_weights_file = '/'.join(('zhengpeng7', usage_to_weights_file[weights_file] if weights_file is not None else usage_to_weights_file['General'])) | |
print('Using weights:', _weights_file) | |
birefnet = AutoModelForImageSegmentation.from_pretrained(_weights_file, trust_remote_code=True) | |
birefnet.to(device) | |
birefnet.eval() | |
resolution = f"{image.shape[1]}x{image.shape[0]}" if resolution == '' else resolution | |
resolution = [int(int(reso)//32*32) for reso in resolution.strip().split('x')] | |
image_shape = image.shape[:2] | |
image_pil = array_to_pil_image(image, tuple(resolution)) | |
# Preprocess the image | |
image_preprocessor = ImagePreprocessor(resolution=tuple(resolution)) | |
image_proc = image_preprocessor.proc(image_pil) | |
image_proc = image_proc.unsqueeze(0) | |
# Perform the prediction | |
with torch.no_grad(): | |
scaled_pred_tensor = birefnet(image_proc.to(device))[-1].sigmoid() | |
if device == 'cuda': | |
scaled_pred_tensor = scaled_pred_tensor.cpu() | |
# Resize the prediction to match the original image shape | |
pred = torch.nn.functional.interpolate(scaled_pred_tensor, size=image_shape, mode='bilinear', align_corners=True).squeeze().numpy() | |
# Apply the prediction mask to the original image | |
image_pil = image_pil.resize(pred.shape[::-1]) | |
pred = np.repeat(np.expand_dims(pred, axis=-1), 3, axis=-1) | |
image_pred = (pred * np.array(image_pil)).astype(np.uint8) | |
return image, image_pred | |
examples = [[_] for _ in glob('examples/*')][:] | |
# Add the option of resolution in a text box. | |
for idx_example, example in enumerate(examples): | |
examples[idx_example].append('1024x1024') | |
examples.append(examples[-1].copy()) | |
examples[-1][1] = '512x512' | |
demo = gr.Interface( | |
fn=predict, | |
inputs=[ | |
'image', | |
gr.Textbox(lines=1, placeholder="Type the resolution (`WxH`) you want, e.g., `1024x1024`. Higher resolutions can be much slower for inference.", label="Resolution"), | |
gr.Radio(list(usage_to_weights_file.keys()), value='General', label="Weights", info="Choose the weights you want.") | |
], | |
outputs=ImageSlider(), | |
examples=examples, | |
title='Online demo for `Bilateral Reference for High-Resolution Dichotomous Image Segmentation`', | |
description=('Upload a picture, our model will extract a highly accurate segmentation of the subject in it. :)' | |
'\nThe resolution used in our training was `1024x1024`, thus the suggested resolution to obtain good results!\n Ours codes can be found at https://github.com/ZhengPeng7/BiRefNet.\n We also maintain the HF model of BiRefNet at https://huggingface.co/ZhengPeng7/BiRefNet for easier access.') | |
) | |
demo.launch(debug=True) | |