Spaces:
Sleeping
Sleeping
File size: 1,297 Bytes
900ecc2 dda9597 125977e dda9597 760bbe9 ce04af0 760bbe9 ce04af0 125977e 760bbe9 125977e 760bbe9 ce04af0 900ecc2 125977e ce04af0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 |
import streamlit as st
import requests
from transformers import pipeline
# Function to send the audio file to the Hugging Face Whisper API
def query(file_data, my_key):
filename = list(uploaded.keys())[0] # Get the uploaded file's nameprint("Uploaded filename:", filename)
with open(filename, "rb") as f:
data = f.read()
response = requests.post(API_URL, headers=headers, data=data)
return response.json()
# Streamlit UI elements
st.title("Transcription App")
st.write("Upload one or more .wav, .mp3, or .flac audio files, and get the transcription.")
# Get the user's Hugging Face API key
my_key = st.text_input("Enter your Hugging Face API Key", type="password")
# File uploader for audio files
uploaded = st.file_uploader("Choose audio file(s)", type=["mp3", "wav", "flac"], accept_multiple_files=True)
if my_key and uploaded_files: # Proceed only if the API key is provided and files are uploaded
st.write("Processing your files...")
results = {}
for filename, file_data in uploaded.items():
# Save the file locally
with open(filename, "wb") as f:
f.write(file_data)
print(f"Sending {filename} to API...")
output = query(filename)
# Store the result
results[filename] = output
|