Spaces:
Sleeping
Sleeping
import streamlit as st | |
from transformers import pipeline | |
import requests | |
# Get the Hugging Face API Key from the user | |
my_key = st.text_input('Enter your Hugging Face API Key', type='password') | |
# Set the API URL for Whisper model | |
API_URL = "https://api-inference.huggingface.co/models/openai/whisper-large-v3-turbo" | |
headers = {"Authorization": f"Bearer {my_key}"} | |
# Function to send the file to the API and get the response | |
def query(filename, file_data): | |
response = requests.post(API_URL, headers=headers, files={'file': file_data}) | |
return response.json() | |
# Streamlit UI elements for file upload | |
st.title("Whisper API Audio Transcription") | |
st.markdown("Upload an audio file and get transcription results") | |
# File uploader widget | |
uploaded_files = st.file_uploader("Choose an audio file", type=["mp3", "wav", "flac"], accept_multiple_files=True) | |
if uploaded_files: | |
results = {} | |
for uploaded_file in uploaded_files: | |
st.write(f"Processing file: {uploaded_file.name}") | |
# Send the file to Hugging Face API | |
output = query(uploaded_file.name, uploaded_file) | |
# Store the result | |
results[uploaded_file.name] = output | |
# Display the results | |
st.write("Results:") | |
for file, result in results.items(): | |
st.write(f"**Results for {file}:**") | |
st.json(result) | |
else: | |
st.write("Please upload an audio file.") | |