Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,93 +1,157 @@
|
|
|
|
1 |
import streamlit as st
|
2 |
-
import
|
3 |
-
import
|
|
|
|
|
4 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
5 |
-
from
|
6 |
-
from
|
7 |
-
from langchain.chat_models import ChatOpenAI
|
8 |
-
from langchain.chains import ConversationalRetrievalChain
|
9 |
from transformers import pipeline
|
|
|
10 |
|
11 |
-
|
12 |
-
|
13 |
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
-
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
-
|
24 |
-
|
|
|
25 |
|
26 |
-
|
27 |
-
|
|
|
28 |
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
text = "\n".join([page.extract_text() for page in pdf.pages if page.extract_text()])
|
33 |
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
# Tabs for Chat, Summary, and Code
|
50 |
-
tabs = st.tabs(["💬 Chat with PDF", "📝 Summarize PDF", "💻 Extract Code"])
|
51 |
-
|
52 |
-
# -------------------- CHAT TAB --------------------
|
53 |
-
with tabs[0]:
|
54 |
-
st.subheader("Ask Questions About Your PDF")
|
55 |
-
if "chat_history" not in st.session_state:
|
56 |
-
st.session_state.chat_history = []
|
57 |
-
|
58 |
-
user_input = st.text_input("Enter your question:", key="chat_input")
|
59 |
-
if st.button("Send"):
|
60 |
-
result = qa_chain({"question": user_input, "chat_history": st.session_state.chat_history})
|
61 |
-
st.session_state.chat_history.append((user_input, result["answer"]))
|
62 |
-
|
63 |
-
for q, a in st.session_state.chat_history:
|
64 |
-
st.markdown(f"**You:** {q}")
|
65 |
-
st.markdown(f"**Bot:** {a}")
|
66 |
-
|
67 |
-
# -------------------- SUMMARY TAB --------------------
|
68 |
-
with tabs[1]:
|
69 |
-
st.subheader("📘 PDF Summary")
|
70 |
-
if st.button("Generate Summary", key="sum"):
|
71 |
try:
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# ------------- app.py -------------
|
2 |
import streamlit as st
|
3 |
+
from pathlib import Path
|
4 |
+
from io import BytesIO
|
5 |
+
import pdfplumber, pytesseract, time, re, logging, os
|
6 |
+
from PIL import Image
|
7 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
8 |
+
from langchain_community.vectorstores import FAISS
|
9 |
+
from sentence_transformers import SentenceTransformer
|
|
|
|
|
10 |
from transformers import pipeline
|
11 |
+
import numpy as np
|
12 |
|
13 |
+
logging.basicConfig(level=logging.INFO)
|
14 |
+
logger = logging.getLogger(__name__)
|
15 |
|
16 |
+
###############################################################################
|
17 |
+
# Page layout
|
18 |
+
###############################################################################
|
19 |
+
st.set_page_config(page_title="PDF Chat & Summarize", layout="wide")
|
20 |
+
st.markdown("""
|
21 |
+
<style>
|
22 |
+
.block-container { padding-top: 1rem; padding-bottom: 0; }
|
23 |
+
.stTabs [data-baseweb="tab-list"] { gap: 4px; }
|
24 |
+
.stTabs [data-baseweb="tab"] { padding: 8px 24px; }
|
25 |
+
.chat-msg { padding: 0.5rem 1rem; border-radius: 8px; margin: 0.3rem 0; }
|
26 |
+
.user { background-color: #e3f2fd; margin-left: 20%; }
|
27 |
+
.assistant { background-color: #f1f3f4; margin-right: 20%; }
|
28 |
+
</style>
|
29 |
+
""", unsafe_allow_html=True)
|
30 |
|
31 |
+
###############################################################################
|
32 |
+
# Cached heavy objects
|
33 |
+
###############################################################################
|
34 |
+
@st.cache_resource(show_spinner=False)
|
35 |
+
def load_embed():
|
36 |
+
return SentenceTransformer("all-MiniLM-L6-v2")
|
37 |
|
38 |
+
@st.cache_resource(show_spinner=False)
|
39 |
+
def load_qa():
|
40 |
+
return pipeline("text2text-generation", model="google/flan-t5-large", max_length=512)
|
41 |
|
42 |
+
@st.cache_resource(show_spinner=False)
|
43 |
+
def load_sum():
|
44 |
+
return pipeline("summarization", model="facebook/bart-large-cnn", max_length=250)
|
45 |
|
46 |
+
embed = load_embed()
|
47 |
+
qa_pipe = load_qa()
|
48 |
+
sum_pipe = load_sum()
|
|
|
49 |
|
50 |
+
###############################################################################
|
51 |
+
# Helpers
|
52 |
+
###############################################################################
|
53 |
+
def extract_pdf(uploaded_file):
|
54 |
+
"""Return (plain text, image_list)"""
|
55 |
+
text = ""
|
56 |
+
images = []
|
57 |
+
with pdfplumber.open(BytesIO(uploaded_file.getbuffer())) as pdf:
|
58 |
+
for page in pdf.pages:
|
59 |
+
txt = page.extract_text_layout() or page.extract_text()
|
60 |
+
if not txt:
|
61 |
+
img = page.to_image(resolution=200).original
|
62 |
+
txt = pytesseract.image_to_string(img)
|
63 |
+
text += txt + "\n"
|
64 |
+
for img in page.images:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
try:
|
66 |
+
x0, y0, x1, y1 = img["x0"], img["y0"], img["x1"], img["y1"]
|
67 |
+
pil = page.within_bbox((x0, y0, x1, y1)).to_image(resolution=200).original
|
68 |
+
images.append(pil)
|
69 |
+
except Exception:
|
70 |
+
pass
|
71 |
+
return text.strip(), images
|
72 |
+
|
73 |
+
def build_index(text):
|
74 |
+
splitter = RecursiveCharacterTextSplitter(chunk_size=600, chunk_overlap=80)
|
75 |
+
chunks = splitter.split_text(text)
|
76 |
+
vectors = embed.encode(chunks, show_progress_bar=False, batch_size=64)
|
77 |
+
index = FAISS.from_embeddings(list(zip(chunks, vectors)), embed)
|
78 |
+
return index
|
79 |
+
|
80 |
+
def summarize(text):
|
81 |
+
if len(text) < 50:
|
82 |
+
return "Document too short to summarize."
|
83 |
+
# pick top 3k chars to stay within model limit
|
84 |
+
truncated = text[:3000]
|
85 |
+
return sum_pipe(truncated, max_length=250, min_length=60, do_sample=False)[0]["summary_text"]
|
86 |
+
|
87 |
+
def answer(question, index):
|
88 |
+
if index is None:
|
89 |
+
return "Please upload & process a PDF first."
|
90 |
+
docs = index.similarity_search(question, k=4)
|
91 |
+
context = "\n".join([d.page_content for d in docs])
|
92 |
+
prompt = f"Answer the question using ONLY the context below.\n\nContext:\n{context}\n\nQuestion: {question}"
|
93 |
+
return qa_pipe(prompt, max_length=256, do_sample=False)[0]["generated_text"]
|
94 |
+
|
95 |
+
###############################################################################
|
96 |
+
# Session init
|
97 |
+
###############################################################################
|
98 |
+
if "messages" not in st.session_state:
|
99 |
+
st.session_state.messages = []
|
100 |
+
if "index" not in st.session_state:
|
101 |
+
st.session_state.index = None
|
102 |
+
if "raw_text" not in st.session_state:
|
103 |
+
st.session_state.raw_text = ""
|
104 |
+
if "images" not in st.session_state:
|
105 |
+
st.session_state.images = []
|
106 |
+
|
107 |
+
###############################################################################
|
108 |
+
# Sidebar
|
109 |
+
###############################################################################
|
110 |
+
with st.sidebar:
|
111 |
+
st.subheader("📁 Upload PDF")
|
112 |
+
uploaded = st.file_uploader("Choose a file", type="pdf", label_visibility="collapsed")
|
113 |
+
if uploaded and st.button("Process PDF"):
|
114 |
+
with st.spinner("Extracting text & images…"):
|
115 |
+
st.session_state.raw_text, st.session_state.images = extract_pdf(uploaded)
|
116 |
+
st.session_state.index = build_index(st.session_state.raw_text)
|
117 |
+
st.session_state.messages = []
|
118 |
+
st.toast("PDF ready!")
|
119 |
+
|
120 |
+
if st.session_state.images:
|
121 |
+
st.subheader("🖼️ Extracted Images")
|
122 |
+
for im in st.session_state.images:
|
123 |
+
st.image(im, use_column_width=True)
|
124 |
+
|
125 |
+
###############################################################################
|
126 |
+
# Main Tabs
|
127 |
+
###############################################################################
|
128 |
+
tab_chat, tab_sum = st.tabs(["💬 Chat", "📄 Summarize"])
|
129 |
+
|
130 |
+
with tab_chat:
|
131 |
+
if st.session_state.index is None:
|
132 |
+
st.info("Upload & process a PDF first using the sidebar.")
|
133 |
+
else:
|
134 |
+
# history
|
135 |
+
for role, msg in st.session_state.messages:
|
136 |
+
css = "user" if role == "user" else "assistant"
|
137 |
+
st.markdown(f'<div class="chat-msg {css}">{msg}</div>', unsafe_allow_html=True)
|
138 |
+
|
139 |
+
# input
|
140 |
+
if question := st.chat_input("Ask anything about the PDF…"):
|
141 |
+
st.session_state.messages.append(("user", question))
|
142 |
+
st.markdown(f'<div class="chat-msg user">{question}</div>', unsafe_allow_html=True)
|
143 |
+
|
144 |
+
with st.spinner("Thinking…"):
|
145 |
+
resp = answer(question, st.session_state.index)
|
146 |
+
st.session_state.messages.append(("assistant", resp))
|
147 |
+
st.markdown(f'<div class="chat-msg assistant">{resp}</div>', unsafe_allow_html=True)
|
148 |
+
|
149 |
+
with tab_sum:
|
150 |
+
if not st.session_state.raw_text:
|
151 |
+
st.info("Upload & process a PDF first.")
|
152 |
+
else:
|
153 |
+
if st.button("Generate Summary"):
|
154 |
+
with st.spinner("Summarizing…"):
|
155 |
+
summary = summarize(st.session_state.raw_text)
|
156 |
+
st.subheader("Summary")
|
157 |
+
st.write(summary)
|