import streamlit as st import logging import os from io import BytesIO import pdfplumber from pdf2image import convert_from_bytes from PIL import Image from langchain.text_splitter import CharacterTextSplitter from langchain_community.vectorstores import FAISS from sentence_transformers import SentenceTransformer from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM, Trainer, TrainingArguments from datasets import load_dataset from rank_bm25 import BM25Okapi from rouge_score import rouge_scorer import re import time import pytesseract # Setup logging for Spaces logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') logger = logging.getLogger(__name__) # Lazy load models @st.cache_resource(ttl=1800) def load_embeddings_model(): logger.info("Loading embeddings model") try: return SentenceTransformer("all-MiniLM-L6-v2") except Exception as e: logger.error(f"Embeddings load error: {str(e)}") st.error(f"Embedding model error: {str(e)}") return None @st.cache_resource(ttl=1800) def load_qa_pipeline(): logger.info("Loading QA pipeline") try: dataset = load_and_prepare_dataset() if dataset: fine_tuned_pipeline = fine_tune_qa_model(dataset) if fine_tuned_pipeline: return fine_tuned_pipeline return pipeline("text2text-generation", model="google/flan-t5-small", max_length=300) except Exception as e: logger.error(f"QA model load error: {str(e)}") st.error(f"QA model error: {str(e)}") return None @st.cache_resource(ttl=1800) def load_summary_pipeline(): logger.info("Loading summary pipeline") try: return pipeline("summarization", model="facebook/bart-large-cnn", max_length=250) except Exception as e: logger.error(f"Summary model load error: {str(e)}") st.error(f"Summary model error: {str(e)}") return None # Load and prepare dataset (e.g., SQuAD) @st.cache_data(ttl=3600) def load_and_prepare_dataset(dataset_name="squad", max_samples=1000): logger.info(f"Loading dataset: {dataset_name}") try: dataset = load_dataset(dataset_name, split="train[:80%]") dataset = dataset.shuffle(seed=42).select(range(min(max_samples, len(dataset)))) def preprocess(examples): inputs = [f"question: {q} context: {c}" for q, c in zip(examples['question'], examples['context'])] targets = examples['answers']['text'] return {'input_text': inputs, 'target_text': [t[0] if t else "" for t in targets]} dataset = dataset.map(preprocess, batched=True, remove_columns=dataset.column_names) return dataset except Exception as e: logger.error(f"Dataset load error: {str(e)}") return None # Fine-tune QA model @st.cache_resource(ttl=3600) def fine_tune_qa_model(dataset): logger.info("Starting fine-tuning") try: model_name = "google/flan-t5-small" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSeq2SeqLM.from_pretrained(model_name) def tokenize_function(examples): model_inputs = tokenizer(examples['input_text'], max_length=512, truncation=True, padding="max_length") labels = tokenizer(examples['target_text'], max_length=128, truncation=True, padding="max_length") model_inputs["labels"] = labels["input_ids"] return model_inputs tokenized_dataset = dataset.map(tokenize_function, batched=True, remove_columns=['input_text', 'target_text']) training_args = TrainingArguments( output_dir="./fine_tuned_model", num_train_epochs=2, per_device_train_batch_size=4, save_steps=500, logging_steps=100, evaluation_strategy="no", learning_rate=3e-5, fp16=False, ) trainer = Trainer( model=model, args=training_args, train_dataset=tokenized_dataset, ) trainer.train() model.save_pretrained("./fine_tuned_model") tokenizer.save_pretrained("./fine_tuned_model") logger.info("Fine-tuning complete") return pipeline("text2text-generation", model="./fine_tuned_model", tokenizer="./fine_tuned_model", max_length=300) except Exception as e: logger.error(f"Fine-tuning error: {str(e)}") return None # Augment vector store with dataset def augment_vector_store(vector_store, dataset_name="squad", max_samples=300): logger.info(f"Augmenting vector store with dataset: {dataset_name}") try: dataset = load_dataset(dataset_name, split="train").select(range(min(max_samples, len(dataset)))) chunks = [f"Context: {c}\nAnswer: {a['text'][0]}" for c, a in zip(dataset['context'], dataset['answers'])] embeddings_model = load_embeddings_model() if embeddings_model and vector_store: embeddings = embeddings_model.encode(chunks, batch_size=128, show_progress_bar=False) vector_store.add_embeddings(zip(chunks, embeddings)) return vector_store except Exception as e: logger.error(f"Vector store augmentation error: {str(e)}") return vector_store # Process PDF with enhanced extraction and OCR fallback def process_pdf(uploaded_file): logger.info("Processing PDF with enhanced extraction") try: text = "" code_blocks = [] images = [] with pdfplumber.open(BytesIO(uploaded_file.getvalue())) as pdf: for page in pdf.pages[:8]: extracted = page.extract_text(layout=False) if not extracted: try: img = page.to_image(resolution=150).original extracted = pytesseract.image_to_string(img, config='--psm 6') images.append(img) except Exception as ocr_e: logger.warning(f"OCR failed: {str(ocr_e)}") if extracted: lines = extracted.split("\n") cleaned_lines = [line for line in lines if not re.match(r'^\s*(Page \d+|.*\d{4}-\d{4}|Copyright.*)\s*$', line, re.I)] text += "\n".join(cleaned_lines) + "\n" for char in page.chars: if 'fontname' in char and 'mono' in char['fontname'].lower(): code_blocks.append(char['text']) code_text = page.extract_text() code_matches = re.finditer(r'(^\s{2,}.*?(?:\n\s{2,}.*?)*)', code_text, re.MULTILINE) for match in code_matches: code_blocks.append(match.group().strip()) tables = page.extract_tables() if tables: for table in tables: text += "\n".join([" | ".join(map(str, row)) for row in table if row]) + "\n" for obj in page.extract_words(): if obj.get('size', 0) > 12: text += f"\n{obj['text']}\n" code_text = "\n".join(code_blocks).strip() if not text: raise ValueError("No text extracted from PDF") text_splitter = CharacterTextSplitter(separator="\n\n", chunk_size=250, chunk_overlap=40, keep_separator=True) text_chunks = text_splitter.split_text(text)[:25] code_chunks = text_splitter.split_text(code_text)[:10] if code_text else [] embeddings_model = load_embeddings_model() if not embeddings_model: return None, None, text, code_text, images text_vector_store = FAISS.from_embeddings( zip(text_chunks, [embeddings_model.encode(chunk, show_progress_bar=False, batch_size=128) for chunk in text_chunks]), embeddings_model.encode ) if text_chunks else None code_vector_store = FAISS.from_embeddings( zip(code_chunks, [embeddings_model.encode(chunk, show_progress_bar=False, batch_size=128) for chunk in code_chunks]), embeddings_model.encode ) if code_chunks else None if text_vector_store: text_vector_store = augment_vector_store(text_vector_store) logger.info("PDF processed successfully") return text_vector_store, code_vector_store, text, code_text, images except Exception as e: logger.error(f"PDF processing error: {str(e)}") st.error(f"PDF error: {str(e)}") return None, None, "", "", [] # Summarize PDF with ROUGE metrics and improved topic focus def summarize_pdf(text): logger.info("Generating summary") try: summary_pipeline = load_summary_pipeline() if not summary_pipeline: return "Summary model unavailable." text_splitter = CharacterTextSplitter(separator="\n\n", chunk_size=250, chunk_overlap=40) chunks = text_splitter.split_text(text) # Hybrid search for relevant chunks embeddings_model = load_embeddings_model() if embeddings_model and chunks: temp_vector_store = FAISS.from_embeddings( zip(chunks, [embeddings_model.encode(chunk, show_progress_bar=False) for chunk in chunks]), embeddings_model.encode ) bm25 = BM25Okapi([chunk.split() for chunk in chunks]) query = "main topic and key points" bm25_docs = bm25.get_top_n(query.split(), chunks, n=4) faiss_docs = temp_vector_store.similarity_search(query, k=4) selected_chunks = list(set(bm25_docs + [doc.page_content for doc in faiss_docs]))[:4] else: selected_chunks = chunks[:4] summaries = [] for chunk in selected_chunks: summary = summary_pipeline(f"Summarize the main topic and key points in detail: {chunk[:250]}", max_length=100, min_length=50, do_sample=False)[0]['summary_text'] summaries.append(summary.strip()) combined_summary = " ".join(summaries) if len(combined_summary.split()) > 250: combined_summary = " ".join(combined_summary.split()[:250]) word_count = len(combined_summary.split()) scorer = rouge_scorer.RougeScorer(['rouge1', 'rougeL'], use_stemmer=True) scores = scorer.score(text[:500], combined_summary) logger.info(f"ROUGE scores: {scores}") return f"**Main Topic Summary** ({word_count} words):\n{combined_summary}\n\n**ROUGE-1**: {scores['rouge1'].fmeasure:.2f}" except Exception as e: logger.error(f"Summary error: {str(e)}") return f"Oops, something went wrong summarizing: {str(e)}" # Answer question with hybrid search def answer_question(text_vector_store, code_vector_store, query): logger.info(f"Processing query: {query}") try: if not text_vector_store and not code_vector_store: return "Please upload a PDF first!" qa_pipeline = load_qa_pipeline() if not qa_pipeline: return "Sorry, the QA model is unavailable right now." is_code_query = any(keyword in query.lower() for keyword in ["code", "script", "function", "programming", "give me code", "show code"]) if is_code_query and code_vector_store: docs = code_vector_store.similarity_search(query, k=3) code = "\n".join(doc.page_content for doc in docs) explanation = qa_pipeline(f"Explain this code: {code[:500]}")[0]['generated_text'] return f"**Code**:\n```python\n{code}\n```\n**Explanation**:\n{explanation}" vector_store = text_vector_store if not vector_store: return "No relevant content found for your query." # Hybrid search: FAISS + BM25 text_chunks = [doc.page_content for doc in vector_store.similarity_search(query, k=10)] bm25 = BM25Okapi([chunk.split() for chunk in text_chunks]) bm25_docs = bm25.get_top_n(query.split(), text_chunks, n=5) faiss_docs = vector_store.similarity_search(query, k=5) combined_docs = list(set(bm25_docs + [doc.page_content for doc in faiss_docs]))[:5] context = "\n".join(combined_docs) prompt = f"Use the following PDF content to answer the question accurately and concisely. Avoid speculation and focus on the provided context:\n\n{context}\n\nQuestion: {query}\nAnswer:" response = qa_pipeline(prompt)[0]['generated_text'] logger.info("Answer generated") return f"**Answer**:\n{response.strip()}\n\n**Source Context**:\n{context[:500]}..." except Exception as e: logger.error(f"Query error: {str(e)}") return f"Sorry, something went wrong: {str(e)}" # Streamlit UI try: st.set_page_config(page_title="Smart PDF Q&A", page_icon="đź“„", layout="wide") st.markdown(""" """, unsafe_allow_html=True) st.markdown('

Smart PDF Q&A

', unsafe_allow_html=True) st.markdown("Upload a PDF to ask questions, summarize (~150 words), or extract code with 'give me code'. Fast and friendly responses!") # Initialize session state if "messages" not in st.session_state: st.session_state.messages = [{"role": "assistant", "content": "Hello! Upload a PDF and process it to start chatting."}] if "text_vector_store" not in st.session_state: st.session_state.text_vector_store = None if "code_vector_store" not in st.session_state: st.session_state.code_vector_store = None if "pdf_text" not in st.session_state: st.session_state.pdf_text = "" if "code_text" not in st.session_state: st.session_state.code_text = "" if "images" not in st.session_state: st.session_state.images = [] # Sidebar with toggle with st.sidebar: st.markdown('', unsafe_allow_html=True) # PDF upload and processing uploaded_file = st.file_uploader("Upload a PDF", type=["pdf"]) col1, col2 = st.columns([1, 1]) with col1: if st.button("Process PDF"): progress_bar = st.progress(0) with st.spinner("Processing PDF..."): for i in range(100): time.sleep(0.02) progress_bar.progress(i + 1) st.session_state.text_vector_store, st.session_state.code_vector_store, st.session_state.pdf_text, st.session_state.code_text, st.session_state.images = process_pdf(uploaded_file) if st.session_state.text_vector_store or st.session_state.code_vector_store: st.success("PDF processed! Ask away or summarize.") st.session_state.messages = [{"role": "assistant", "content": "PDF processed! What would you like to know?"}] else: st.error("Failed to process PDF.") with col2: if st.button("Summarize PDF") and st.session_state.pdf_text: progress_bar = st.progress(0) with st.spinner("Summarizing..."): for i in range(100): time.sleep(0.008) progress_bar.progress(i + 1) summary = summarize_pdf(st.session_state.pdf_text) st.session_state.messages.append({"role": "assistant", "content": summary}) st.markdown(summary, unsafe_allow_html=True) # Chat interface if st.session_state.text_vector_store or st.session_state.code_vector_store: prompt = st.chat_input("Ask a question (e.g., 'Give me code' or 'What’s the main idea?'):") if prompt: st.session_state.messages.append({"role": "user", "content": prompt}) with st.chat_message("user"): st.markdown(prompt) with st.chat_message("assistant"): progress_bar = st.progress(0) with st.spinner('
⏳ Processing...
'): for i in range(100): time.sleep(0.004) progress_bar.progress(i + 1) answer = answer_question(st.session_state.text_vector_store, st.session_state.code_vector_store, prompt) st.markdown(answer, unsafe_allow_html=True) st.session_state.messages.append({"role": "assistant", "content": answer}) # Display chat history for message in st.session_state.messages: with st.chat_message(message["role"]): st.markdown(message["content"], unsafe_allow_html=True) # Display extracted images if st.session_state.images: st.header("Extracted Images") for img in st.session_state.images: st.image(img, caption="Extracted PDF Image", use_column_width=True) # Download chat history if st.session_state.messages: chat_text = "\n".join(f"{m['role'].capitalize()}: {m['content']}" for m in st.session_state.messages) st.download_button("Download Chat History", chat_text, "chat_history.txt") except Exception as e: logger.error(f"App initialization failed: {str(e)}") st.error(f"App failed to start: {str(e)}. Check Spaces logs or contact support.")