Spaces:
Sleeping
Sleeping
Commit
·
e18c38e
1
Parent(s):
632ca18
fix: update IndoNLGTokenizer
Browse files- indobenchmark.py +3 -261
indobenchmark.py
CHANGED
|
@@ -14,21 +14,11 @@
|
|
| 14 |
# limitations under the License
|
| 15 |
""" Tokenization classes for IndoNLG model."""
|
| 16 |
|
| 17 |
-
from typing import
|
| 18 |
-
from transformers import PreTrainedTokenizer
|
| 19 |
|
| 20 |
-
from
|
| 21 |
-
from transformers.utils import (
|
| 22 |
-
PaddingStrategy,
|
| 23 |
-
TensorType,
|
| 24 |
-
is_tf_available,
|
| 25 |
-
is_torch_available,
|
| 26 |
-
logging,
|
| 27 |
-
to_py_obj,
|
| 28 |
-
)
|
| 29 |
-
import numpy as np
|
| 30 |
import sentencepiece as spm
|
| 31 |
-
from transformers.utils.generic import _is_tensorflow, _is_torch
|
| 32 |
|
| 33 |
logger = logging.get_logger(__name__)
|
| 34 |
|
|
@@ -350,251 +340,3 @@ class IndoNLGTokenizer(PreTrainedTokenizer):
|
|
| 350 |
def decode(self, inputs, skip_special_tokens=False, **kwargs):
|
| 351 |
outputs = super().decode(inputs, skip_special_tokens=skip_special_tokens, **kwargs)
|
| 352 |
return outputs.replace(' ','').replace(SPIECE_UNDERLINE, ' ')
|
| 353 |
-
|
| 354 |
-
def _pad_decoder(
|
| 355 |
-
self,
|
| 356 |
-
encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding],
|
| 357 |
-
max_length: Optional[int] = None,
|
| 358 |
-
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
|
| 359 |
-
pad_to_multiple_of: Optional[int] = None,
|
| 360 |
-
return_attention_mask: Optional[bool] = None,
|
| 361 |
-
) -> dict:
|
| 362 |
-
"""
|
| 363 |
-
Pad encoded inputs (on left/right and up to predefined length or max length in the batch)
|
| 364 |
-
Args:
|
| 365 |
-
encoded_inputs:
|
| 366 |
-
Dictionary of tokenized inputs (`List[int]`) or batch of tokenized inputs (`List[List[int]]`).
|
| 367 |
-
max_length: maximum length of the returned list and optionally padding length (see below).
|
| 368 |
-
Will truncate by taking into account the special tokens.
|
| 369 |
-
padding_strategy: PaddingStrategy to use for padding.
|
| 370 |
-
- PaddingStrategy.LONGEST Pad to the longest sequence in the batch
|
| 371 |
-
- PaddingStrategy.MAX_LENGTH: Pad to the max length (default)
|
| 372 |
-
- PaddingStrategy.DO_NOT_PAD: Do not pad
|
| 373 |
-
The tokenizer padding sides are defined in self.padding_side:
|
| 374 |
-
- 'left': pads on the left of the sequences
|
| 375 |
-
- 'right': pads on the right of the sequences
|
| 376 |
-
pad_to_multiple_of: (optional) Integer if set will pad the sequence to a multiple of the provided value.
|
| 377 |
-
This is especially useful to enable the use of Tensor Core on NVIDIA hardware with compute capability
|
| 378 |
-
>= 7.5 (Volta).
|
| 379 |
-
return_attention_mask:
|
| 380 |
-
(optional) Set to False to avoid returning attention mask (default: set to model specifics)
|
| 381 |
-
"""
|
| 382 |
-
# Load from model defaults
|
| 383 |
-
if return_attention_mask is None:
|
| 384 |
-
return_attention_mask = "decoder_attention_mask" in self.model_input_names
|
| 385 |
-
|
| 386 |
-
required_input = encoded_inputs[self.model_input_names[2]]
|
| 387 |
-
|
| 388 |
-
if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
|
| 389 |
-
max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
|
| 390 |
-
|
| 391 |
-
needs_to_be_padded = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(required_input) != max_length
|
| 392 |
-
|
| 393 |
-
# Initialize attention mask if not present.
|
| 394 |
-
if return_attention_mask and "decoder_attention_mask" not in encoded_inputs:
|
| 395 |
-
encoded_inputs["decoder_attention_mask"] = [1] * len(required_input)
|
| 396 |
-
|
| 397 |
-
if needs_to_be_padded:
|
| 398 |
-
difference = max_length - len(required_input)
|
| 399 |
-
|
| 400 |
-
if self.padding_side == "right":
|
| 401 |
-
if return_attention_mask:
|
| 402 |
-
encoded_inputs["decoder_attention_mask"] = encoded_inputs["decoder_attention_mask"] + [0] * difference
|
| 403 |
-
if "decoder_token_type_ids" in encoded_inputs:
|
| 404 |
-
encoded_inputs["decoder_token_type_ids"] = (
|
| 405 |
-
encoded_inputs["decoder_token_type_ids"] + [self.pad_token_type_id] * difference
|
| 406 |
-
)
|
| 407 |
-
if "decoder_special_tokens_mask" in encoded_inputs:
|
| 408 |
-
encoded_inputs["decoder_special_tokens_mask"] = encoded_inputs["decoder_special_tokens_mask"] + [1] * difference
|
| 409 |
-
encoded_inputs[self.model_input_names[2]] = required_input + [self.pad_token_id] * difference
|
| 410 |
-
|
| 411 |
-
label_input = encoded_inputs[self.model_input_names[4]]
|
| 412 |
-
encoded_inputs[self.model_input_names[4]] = label_input + [-100] * difference
|
| 413 |
-
elif self.padding_side == "left":
|
| 414 |
-
if return_attention_mask:
|
| 415 |
-
encoded_inputs["decoder_attention_mask"] = [0] * difference + encoded_inputs["decoder_attention_mask"]
|
| 416 |
-
if "decoder_token_type_ids" in encoded_inputs:
|
| 417 |
-
encoded_inputs["decoder_token_type_ids"] = [self.pad_token_type_id] * difference + encoded_inputs[
|
| 418 |
-
"decoder_token_type_ids"
|
| 419 |
-
]
|
| 420 |
-
if "decoder_special_tokens_mask" in encoded_inputs:
|
| 421 |
-
encoded_inputs["decoder_special_tokens_mask"] = [1] * difference + encoded_inputs["decoder_special_tokens_mask"]
|
| 422 |
-
encoded_inputs[self.model_input_names[2]] = [self.pad_token_id] * difference + required_input
|
| 423 |
-
|
| 424 |
-
label_input = encoded_inputs[self.model_input_names[4]]
|
| 425 |
-
encoded_inputs[self.model_input_names[4]] = label_input + [-100] * difference
|
| 426 |
-
else:
|
| 427 |
-
raise ValueError("Invalid padding strategy:" + str(self.padding_side))
|
| 428 |
-
|
| 429 |
-
return encoded_inputs
|
| 430 |
-
|
| 431 |
-
def pad(self,
|
| 432 |
-
encoded_inputs: Union[
|
| 433 |
-
BatchEncoding,
|
| 434 |
-
List[BatchEncoding],
|
| 435 |
-
Dict[str, EncodedInput],
|
| 436 |
-
Dict[str, List[EncodedInput]],
|
| 437 |
-
List[Dict[str, EncodedInput]],
|
| 438 |
-
],
|
| 439 |
-
padding: Union[bool, str, PaddingStrategy] = True,
|
| 440 |
-
max_length: Optional[int] = None,
|
| 441 |
-
pad_to_multiple_of: Optional[int] = None,
|
| 442 |
-
return_attention_mask: Optional[bool] = None,
|
| 443 |
-
return_tensors: Optional[Union[str, TensorType]] = None,
|
| 444 |
-
verbose: bool = True,
|
| 445 |
-
) -> BatchEncoding:
|
| 446 |
-
"""
|
| 447 |
-
Pad a single encoded input or a batch of encoded inputs up to predefined length or to the max sequence length
|
| 448 |
-
in the batch.
|
| 449 |
-
|
| 450 |
-
Padding side (left/right) padding token ids are defined at the tokenizer level (with `self.padding_side`,
|
| 451 |
-
`self.pad_token_id` and `self.pad_token_type_id`)
|
| 452 |
-
|
| 453 |
-
<Tip>
|
| 454 |
-
|
| 455 |
-
If the `encoded_inputs` passed are dictionary of numpy arrays, PyTorch tensors or TensorFlow tensors, the
|
| 456 |
-
result will use the same type unless you provide a different tensor type with `return_tensors`. In the case of
|
| 457 |
-
PyTorch tensors, you will lose the specific device of your tensors however.
|
| 458 |
-
|
| 459 |
-
</Tip>
|
| 460 |
-
|
| 461 |
-
Args:
|
| 462 |
-
encoded_inputs ([`BatchEncoding`], list of [`BatchEncoding`], `Dict[str, List[int]]`, `Dict[str, List[List[int]]` or `List[Dict[str, List[int]]]`):
|
| 463 |
-
Tokenized inputs. Can represent one input ([`BatchEncoding`] or `Dict[str, List[int]]`) or a batch of
|
| 464 |
-
tokenized inputs (list of [`BatchEncoding`], *Dict[str, List[List[int]]]* or *List[Dict[str,
|
| 465 |
-
List[int]]]*) so you can use this method during preprocessing as well as in a PyTorch Dataloader
|
| 466 |
-
collate function.
|
| 467 |
-
|
| 468 |
-
Instead of `List[int]` you can have tensors (numpy arrays, PyTorch tensors or TensorFlow tensors), see
|
| 469 |
-
the note above for the return type.
|
| 470 |
-
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `True`):
|
| 471 |
-
Select a strategy to pad the returned sequences (according to the model's padding side and padding
|
| 472 |
-
index) among:
|
| 473 |
-
|
| 474 |
-
- `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
|
| 475 |
-
sequence if provided).
|
| 476 |
-
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
|
| 477 |
-
acceptable input length for the model if that argument is not provided.
|
| 478 |
-
- `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
|
| 479 |
-
lengths).
|
| 480 |
-
max_length (`int`, *optional*):
|
| 481 |
-
Maximum length of the returned list and optionally padding length (see above).
|
| 482 |
-
pad_to_multiple_of (`int`, *optional*):
|
| 483 |
-
If set will pad the sequence to a multiple of the provided value.
|
| 484 |
-
|
| 485 |
-
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability
|
| 486 |
-
>= 7.5 (Volta).
|
| 487 |
-
return_attention_mask (`bool`, *optional*):
|
| 488 |
-
Whether to return the attention mask. If left to the default, will return the attention mask according
|
| 489 |
-
to the specific tokenizer's default, defined by the `return_outputs` attribute.
|
| 490 |
-
|
| 491 |
-
[What are attention masks?](../glossary#attention-mask)
|
| 492 |
-
return_tensors (`str` or [`~utils.TensorType`], *optional*):
|
| 493 |
-
If set, will return tensors instead of list of python integers. Acceptable values are:
|
| 494 |
-
|
| 495 |
-
- `'tf'`: Return TensorFlow `tf.constant` objects.
|
| 496 |
-
- `'pt'`: Return PyTorch `torch.Tensor` objects.
|
| 497 |
-
- `'np'`: Return Numpy `np.ndarray` objects.
|
| 498 |
-
verbose (`bool`, *optional*, defaults to `True`):
|
| 499 |
-
Whether or not to print more information and warnings.
|
| 500 |
-
"""
|
| 501 |
-
# If we have a list of dicts, let's convert it in a dict of lists
|
| 502 |
-
# We do this to allow using this method as a collate_fn function in PyTorch Dataloader
|
| 503 |
-
if isinstance(encoded_inputs, (list, tuple)) and isinstance(encoded_inputs[0], Mapping):
|
| 504 |
-
encoded_inputs = {key: [example[key] for example in encoded_inputs] for key in encoded_inputs[0].keys()}
|
| 505 |
-
|
| 506 |
-
# The model's main input name, usually `input_ids`, has be passed for padding
|
| 507 |
-
if self.model_input_names[0] not in encoded_inputs:
|
| 508 |
-
raise ValueError(
|
| 509 |
-
"You should supply an encoding or a list of encodings to this method "
|
| 510 |
-
f"that includes {self.model_input_names[0]}, but you provided {list(encoded_inputs.keys())}"
|
| 511 |
-
)
|
| 512 |
-
|
| 513 |
-
required_input = encoded_inputs[self.model_input_names[0]]
|
| 514 |
-
|
| 515 |
-
if not required_input:
|
| 516 |
-
if return_attention_mask:
|
| 517 |
-
encoded_inputs["attention_mask"] = []
|
| 518 |
-
return encoded_inputs
|
| 519 |
-
|
| 520 |
-
# If we have PyTorch/TF/NumPy tensors/arrays as inputs, we cast them as python objects
|
| 521 |
-
# and rebuild them afterwards if no return_tensors is specified
|
| 522 |
-
# Note that we lose the specific device the tensor may be on for PyTorch
|
| 523 |
-
|
| 524 |
-
first_element = required_input[0]
|
| 525 |
-
if isinstance(first_element, (list, tuple)):
|
| 526 |
-
# first_element might be an empty list/tuple in some edge cases so we grab the first non empty element.
|
| 527 |
-
for item in required_input:
|
| 528 |
-
if len(item) != 0:
|
| 529 |
-
first_element = item[0]
|
| 530 |
-
break
|
| 531 |
-
# At this state, if `first_element` is still a list/tuple, it's an empty one so there is nothing to do.
|
| 532 |
-
if not isinstance(first_element, (int, list, tuple)):
|
| 533 |
-
if is_tf_available() and _is_tensorflow(first_element):
|
| 534 |
-
return_tensors = "tf" if return_tensors is None else return_tensors
|
| 535 |
-
elif is_torch_available() and _is_torch(first_element):
|
| 536 |
-
return_tensors = "pt" if return_tensors is None else return_tensors
|
| 537 |
-
elif isinstance(first_element, np.ndarray):
|
| 538 |
-
return_tensors = "np" if return_tensors is None else return_tensors
|
| 539 |
-
else:
|
| 540 |
-
raise ValueError(
|
| 541 |
-
f"type of {first_element} unknown: {type(first_element)}. "
|
| 542 |
-
f"Should be one of a python, numpy, pytorch or tensorflow object."
|
| 543 |
-
)
|
| 544 |
-
|
| 545 |
-
for key, value in encoded_inputs.items():
|
| 546 |
-
encoded_inputs[key] = to_py_obj(value)
|
| 547 |
-
|
| 548 |
-
# Convert padding_strategy in PaddingStrategy
|
| 549 |
-
padding_strategy, _, max_length, _ = self._get_padding_truncation_strategies(
|
| 550 |
-
padding=padding, max_length=max_length, verbose=verbose
|
| 551 |
-
)
|
| 552 |
-
|
| 553 |
-
required_input = encoded_inputs[self.model_input_names[0]]
|
| 554 |
-
if required_input and not isinstance(required_input[0], (list, tuple)):
|
| 555 |
-
encoded_inputs = self._pad(
|
| 556 |
-
encoded_inputs,
|
| 557 |
-
max_length=max_length,
|
| 558 |
-
padding_strategy=padding_strategy,
|
| 559 |
-
pad_to_multiple_of=pad_to_multiple_of,
|
| 560 |
-
return_attention_mask=return_attention_mask,
|
| 561 |
-
)
|
| 562 |
-
return BatchEncoding(encoded_inputs, tensor_type=return_tensors)
|
| 563 |
-
|
| 564 |
-
batch_size = len(required_input)
|
| 565 |
-
assert all(
|
| 566 |
-
len(v) == batch_size for v in encoded_inputs.values()
|
| 567 |
-
), "Some items in the output dictionary have a different batch size than others."
|
| 568 |
-
|
| 569 |
-
if padding_strategy == PaddingStrategy.LONGEST:
|
| 570 |
-
max_length = max(len(inputs) for inputs in required_input)
|
| 571 |
-
padding_strategy = PaddingStrategy.MAX_LENGTH
|
| 572 |
-
|
| 573 |
-
batch_outputs = {}
|
| 574 |
-
for i in range(batch_size):
|
| 575 |
-
inputs = dict((k, v[i]) for k, v in encoded_inputs.items())
|
| 576 |
-
outputs = self._pad(
|
| 577 |
-
inputs,
|
| 578 |
-
max_length=max_length,
|
| 579 |
-
padding_strategy=padding_strategy,
|
| 580 |
-
pad_to_multiple_of=pad_to_multiple_of,
|
| 581 |
-
return_attention_mask=return_attention_mask,
|
| 582 |
-
)
|
| 583 |
-
|
| 584 |
-
# Handle decoder_input_ids
|
| 585 |
-
if self.model_input_names[2] in outputs:
|
| 586 |
-
max_decoder_length = max(len(inputs) for inputs in encoded_inputs[self.model_input_names[2]])
|
| 587 |
-
outputs = self._pad_decoder(
|
| 588 |
-
outputs,
|
| 589 |
-
max_length=max_decoder_length,
|
| 590 |
-
padding_strategy=padding_strategy,
|
| 591 |
-
pad_to_multiple_of=pad_to_multiple_of,
|
| 592 |
-
return_attention_mask=return_attention_mask,
|
| 593 |
-
)
|
| 594 |
-
|
| 595 |
-
for key, value in outputs.items():
|
| 596 |
-
if key not in batch_outputs:
|
| 597 |
-
batch_outputs[key] = []
|
| 598 |
-
batch_outputs[key].append(value)
|
| 599 |
-
|
| 600 |
-
return BatchEncoding(batch_outputs, tensor_type=return_tensors)
|
|
|
|
| 14 |
# limitations under the License
|
| 15 |
""" Tokenization classes for IndoNLG model."""
|
| 16 |
|
| 17 |
+
from typing import List, Optional, Tuple, Union
|
| 18 |
+
from transformers import PreTrainedTokenizer
|
| 19 |
|
| 20 |
+
from transformers.utils import logging
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
import sentencepiece as spm
|
|
|
|
| 22 |
|
| 23 |
logger = logging.get_logger(__name__)
|
| 24 |
|
|
|
|
| 340 |
def decode(self, inputs, skip_special_tokens=False, **kwargs):
|
| 341 |
outputs = super().decode(inputs, skip_special_tokens=skip_special_tokens, **kwargs)
|
| 342 |
return outputs.replace(' ','').replace(SPIECE_UNDERLINE, ' ')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|