Spaces:
Running
Running
import base64 | |
import cv2 | |
import face_recognition | |
import gradio as gr | |
import moviepy.editor as mp | |
import os | |
import time | |
import torchaudio | |
from fastai.vision.all import load_learner | |
from transformers import WhisperProcessor, WhisperForConditionalGeneration, pipeline | |
emotion_pipeline = pipeline("text-classification", model="cardiffnlp/twitter-roberta-base-emotion") | |
sentiment_pipeline = pipeline("sentiment-analysis", model="distilbert-base-uncased-finetuned-sst-2-english") | |
model = load_learner("gaze-recognizer-v3.pkl") | |
def extract_audio(video_path): | |
clip = mp.VideoFileClip(video_path) | |
clip.audio.write_audiofile("audio.wav") | |
def analyze_emotion(text): | |
result = emotion_pipeline(text) | |
return result | |
def analyze_sentiment(text): | |
result = sentiment_pipeline(text) | |
return result | |
def get_transcription(path): | |
extract_audio(path) | |
waveform, sample_rate = torchaudio.load("audio.wav") | |
resampler = torchaudio.transforms.Resample(sample_rate, 16000) | |
waveform = resampler(waveform)[0] | |
processor = WhisperProcessor.from_pretrained("openai/whisper-tiny") | |
model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny") | |
model.config.forced_decoder_ids = None | |
input_features = processor(waveform.squeeze(dim=0), return_tensors="pt").input_features | |
predicted_ids = model.generate(input_features) | |
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True) | |
return transcription[0] | |
def process_frame(frame): | |
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) | |
face_locations = face_recognition.face_locations(gray) | |
if len(face_locations) > 0: | |
for top, right, bottom, left in face_locations: | |
face_image = gray[top:bottom, left:right] | |
resized_face_image = cv2.resize(face_image, (128, 128)) | |
result = model.predict(resized_face_image) | |
return result[0] | |
return None | |
def video_processing(video_file, encoded_video): | |
if encoded_video != "": | |
decoded_file_data = base64.b64decode(encoded_video) | |
with open("temp_video.mp4", "wb") as f: | |
f.write(decoded_file_data) | |
video_file = "temp_video.mp4" | |
transcription = get_transcription(video_file) | |
print(transcription) | |
video_capture = cv2.VideoCapture(video_file) | |
on_camera = 0 | |
off_camera = 0 | |
total = 0 | |
emotions = [] | |
while True: | |
for _ in range(24 * 3): | |
ret, frame = video_capture.read() | |
if not ret: | |
break | |
if not ret: | |
break | |
result = process_frame(frame) | |
if result: | |
if result == 'on_camera': | |
on_camera += 1 | |
elif result == 'off_camera': | |
off_camera += 1 | |
total += 1 | |
emotion_results = analyze_emotion(transcription) | |
emotions.append(emotion_results) | |
video_capture.release() | |
cv2.destroyAllWindows() | |
if os.path.exists("temp_video.mp4"): | |
os.remove("temp_video.mp4") | |
gaze_percentage = on_camera / total * 100 if total > 0 | |