adamcasson commited on
Commit
4af74ed
·
1 Parent(s): 4839dd4

Add application file

Browse files
Files changed (1) hide show
  1. app.py +177 -0
app.py ADDED
@@ -0,0 +1,177 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import random
2
+ from functools import partial
3
+
4
+ import gradio as gr
5
+ import numpy as np
6
+ from transformers import AutoTokenizer
7
+
8
+ tokenizer = AutoTokenizer.from_pretrained("adamcasson/ul2-tinystories")
9
+
10
+ def mask_spans(
11
+ tokens,
12
+ mu,
13
+ r,
14
+ vocab_size,
15
+ eos_id,
16
+ prepend_id=None,
17
+ prefix_lm=False,
18
+ ):
19
+ masked_tokens = tokens[:]
20
+
21
+ encoder_inputs = [prepend_id] if prepend_id is not None else []
22
+ targets = []
23
+
24
+ # Original T5 code reused tokens at the end of vocab for sentinels
25
+ # https://github.com/google-research/text-to-text-transfer-transformer/blob/258fd30687e6c60d18b7204d009dc5c753142987/t5/data/preprocessors.py#L3106C6-L3106C6
26
+ sentinel_id = vocab_size - 1
27
+
28
+ if prefix_lm:
29
+ # n = 1
30
+ mu = max(1, int(len(tokens) * r))
31
+ start = max(
32
+ 0, len(tokens) - random.randint(1, int(2 * mu))
33
+ ) # max to handle start < 0
34
+ encoder_inputs += tokens[:start] + [sentinel_id]
35
+ targets += tokens[start:]
36
+ for i in range(start, len(tokens)):
37
+ masked_tokens[i] = -1
38
+
39
+ else:
40
+ # n = ceil(len(tokens) / mu)
41
+ prev_span_unmasked = False
42
+ start = 0
43
+ end = 0
44
+ while start < len(tokens):
45
+ # uniform random span length
46
+ length = random.randint(1, int(2 * mu))
47
+ end = min(start + length, len(tokens))
48
+
49
+ # randomly decide if span should be masked
50
+ if np.random.binomial(1, p=r):
51
+ encoder_inputs.append(sentinel_id)
52
+ targets += tokens[start:end]
53
+ for i in range(start, end):
54
+ masked_tokens[i] = -1
55
+ prev_span_unmasked = False
56
+ sentinel_id -= 1
57
+ else:
58
+ encoder_inputs += tokens[start:end]
59
+ # if previous span was also unmasked we don't need to keep adding the sentinel token
60
+ if not prev_span_unmasked:
61
+ targets.append(sentinel_id)
62
+ prev_span_unmasked = True
63
+ start = end
64
+
65
+ encoder_inputs.append(eos_id)
66
+ targets.append(eos_id)
67
+ decoder_inputs = (
68
+ [prepend_id] + targets[:-1]
69
+ if prepend_id is not None
70
+ else [eos_id] + targets[:-1]
71
+ )
72
+
73
+ return encoder_inputs, decoder_inputs, targets, masked_tokens
74
+
75
+ # Create mixture-of-denoisers
76
+ denoiser_map = {
77
+ "R (µ = 3, r = 0.15)": partial(
78
+ mask_spans,
79
+ mu=3,
80
+ r=0.15,
81
+ vocab_size=tokenizer.vocab_size,
82
+ eos_id=tokenizer.eos_token_id,
83
+ prepend_id=tokenizer.vocab["[R]"],
84
+ ),
85
+ "R (µ = 8, r = 0.15)": partial(
86
+ mask_spans,
87
+ mu=8,
88
+ r=0.15,
89
+ vocab_size=tokenizer.vocab_size,
90
+ eos_id=tokenizer.eos_token_id,
91
+ prepend_id=tokenizer.vocab["[R]"],
92
+ ),
93
+ "S (r = 0.25)": partial(
94
+ mask_spans,
95
+ mu=None,
96
+ r=0.25,
97
+ vocab_size=tokenizer.vocab_size,
98
+ eos_id=tokenizer.eos_token_id,
99
+ prefix_lm=True,
100
+ prepend_id=tokenizer.vocab["[S]"],
101
+ ),
102
+ "X (µ = 3, r = 0.5)": partial(
103
+ mask_spans,
104
+ mu=3,
105
+ r=0.5,
106
+ vocab_size=tokenizer.vocab_size,
107
+ eos_id=tokenizer.eos_token_id,
108
+ prepend_id=tokenizer.vocab["[X]"],
109
+ ),
110
+ "X (µ = 8, r = 0.5)": partial(
111
+ mask_spans,
112
+ mu=8,
113
+ r=0.5,
114
+ vocab_size=tokenizer.vocab_size,
115
+ eos_id=tokenizer.eos_token_id,
116
+ prepend_id=tokenizer.vocab["[X]"],
117
+ ),
118
+ "X (µ = 32, r = 0.15)": partial(
119
+ mask_spans,
120
+ mu=32,
121
+ r=0.15,
122
+ vocab_size=tokenizer.vocab_size,
123
+ eos_id=tokenizer.eos_token_id,
124
+ prepend_id=tokenizer.vocab["[X]"],
125
+ ),
126
+ "X (µ = 32, r = 0.5)": partial(
127
+ mask_spans,
128
+ mu=32,
129
+ r=0.5,
130
+ vocab_size=tokenizer.vocab_size,
131
+ eos_id=tokenizer.eos_token_id,
132
+ prepend_id=tokenizer.vocab["[X]"],
133
+ ),
134
+ }
135
+
136
+ def mask_viz(denoiser, text):
137
+ seq = tokenizer.encode(text)
138
+ tokens = tokenizer.tokenize(text)
139
+
140
+ out = denoiser_map[denoiser](seq)
141
+
142
+ mask = out[-1]
143
+
144
+ highlight_tok = []
145
+ for tok, tok_mask in zip(tokens, mask):
146
+ highlight_tok.append((tok.replace("Ġ", " ").replace("Ċ", "\n"), "masked" if tok_mask == -1 else "unmasked"))
147
+
148
+ return highlight_tok
149
+
150
+ iface = gr.Interface(
151
+ fn=mask_viz,
152
+ inputs=[
153
+ gr.Dropdown(
154
+ label="Denoiser",
155
+ choices=[
156
+ "R (µ = 3, r = 0.15)",
157
+ "R (µ = 8, r = 0.15)",
158
+ "S (r = 0.25)",
159
+ "X (µ = 3, r = 0.5)",
160
+ "X (µ = 8, r = 0.5)",
161
+ "X (µ = 32, r = 0.15)",
162
+ "X (µ = 32, r = 0.5)",
163
+ ],
164
+ value="R (µ = 3, r = 0.15)",
165
+ ),
166
+ gr.Textbox(
167
+ value='Once upon a time, there was a clever little dog named Max. Max loved to run and play with his friends in the park. One day, Max was running very fast when he fell and hurt his knee. Max went to his friend, the wise old owl, and said, "Owl, my knee hurts. What can I do?" The owl thought for a moment and said, "Max, you should test your knee. Try to walk slowly and see if it still hurts." So Max tested his knee by walking slowly. At first, it hurt a little, but soon Max felt better. He said, "Thank you, Owl, for your help. Now I can play with my friends again." Max was so happy that he could play with his friends without pain. He learned that sometimes, it was good to slow down and listen to his body. And Max and his friends played happily in the park ever after.'
168
+ ),
169
+ ],
170
+ outputs=gr.HighlightedText(
171
+ combine_adjacent=True,
172
+ show_legend=True,
173
+ color_map={"unmasked": "green", "masked": "red"}
174
+ )
175
+ )
176
+
177
+ iface.launch()