Spaces:
Running
Running
File size: 7,640 Bytes
403d36c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
from torch.utils.data import Dataset, DataLoader
import json
import torch
from sklearn.model_selection import train_test_split
from sklearn.metrics import precision_recall_fscore_support, classification_report
import numpy as np
import matplotlib.pyplot as plt
# Load dataset pelatihan dari datasets_new.json
with open('datasets_new.json', 'r') as f:
datasets = json.load(f)
texts = []
labels = []
tags = sorted(set(dataset['tag'] for dataset in datasets['intents']))
for dataset in datasets['intents']:
for pattern in dataset['patterns']:
texts.append(pattern)
labels.append(tags.index(dataset['tag']))
# Logging distribusi kelas sebelum pemisahan data
label_counts = np.bincount(labels)
print("Distribusi kelas sebelum pemisahan data:")
for tag, count in zip(tags, label_counts):
print(f"Tag: {tag}, Jumlah sampel: {count}")
# Split data menjadi train dan val
texts_train, texts_val, labels_train, labels_val = train_test_split(
texts, labels, test_size=0.2, random_state=42, stratify=labels
)
# Logging distribusi kelas setelah pemisahan
val_label_counts = np.bincount(labels_val, minlength=len(tags))
print("\nDistribusi kelas di data validasi:")
for tag, count in zip(tags, val_label_counts):
print(f"Tag: {tag}, Jumlah sampel: {count}")
# Load dataset pengujian dari test_dataset.json
with open('test_dataset.json', 'r') as f:
test_data = json.load(f)
# Ekstrak teks dan intent yang benar
texts_test = [item['text'] for item in test_data]
true_intents = [item['true_intent'] for item in test_data]
# Konversi intent ke indeks label berdasarkan tags
labels_test = [tags.index(intent) for intent in true_intents if intent in tags]
# Periksa apakah ada intent yang tidak ada dalam tags
missing_intents = set(true_intents) - set(tags)
if missing_intents:
print(f"Peringatan: Intent {missing_intents} tidak ditemukan dalam tags. Pastikan datasets_new.json mencakup semua intent.")
# Inisialisasi tokenizer dan model
tokenizer = AutoTokenizer.from_pretrained("indobenchmark/indobert-base-p1")
model = AutoModelForSequenceClassification.from_pretrained("indobenchmark/indobert-base-p1", num_labels=len(tags))
class IndoBERTDataset(Dataset):
def __init__(self, texts, labels):
self.texts = texts
self.labels = labels
def __getitem__(self, idx):
encoding = tokenizer(self.texts[idx], padding='max_length', truncation=True, max_length=20, return_tensors='pt')
return {
'input_ids': encoding['input_ids'].squeeze(),
'attention_mask': encoding['attention_mask'].squeeze(),
'labels': torch.tensor(self.labels[idx], dtype=torch.long)
}
def __len__(self):
return len(self.texts)
# Buat dataset dan dataloader untuk train, val, dan test
train_dataset = IndoBERTDataset(texts_train, labels_train)
val_dataset = IndoBERTDataset(texts_val, labels_val)
test_dataset = IndoBERTDataset(texts_test, labels_test)
train_loader = DataLoader(train_dataset, batch_size=8, shuffle=True)
val_loader = DataLoader(val_dataset, batch_size=8)
test_loader = DataLoader(test_dataset, batch_size=8)
# Pelatihan
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model.to(device)
optimizer = torch.optim.AdamW(model.parameters(), lr=1e-5)
num_epochs = 10
best_val_loss = float('inf')
patience = 3
counter = 0
# Lists untuk menyimpan loss pelatihan dan validasi
train_losses = []
val_losses = []
for epoch in range(num_epochs):
model.train()
train_loss_epoch = 0
for batch in train_loader:
inputs = {k: v.to(device) for k, v in batch.items() if k != 'labels'}
labels = batch['labels'].to(device)
outputs = model(**inputs, labels=labels)
loss = outputs.loss
train_loss_epoch += loss.item()
optimizer.zero_grad()
loss.backward()
optimizer.step()
# Hitung rata-rata loss pelatihan per epoch
train_loss_epoch /= len(train_loader)
train_losses.append(train_loss_epoch)
# Validasi
model.eval()
val_loss = 0
correct = 0
total = 0
all_preds = []
all_labels = []
with torch.no_grad():
for batch in val_loader:
inputs = {k: v.to(device) for k, v in batch.items() if k != 'labels'}
labels = batch['labels'].to(device)
outputs = model(**inputs, labels=labels)
val_loss += outputs.loss.item()
_, predicted = torch.max(outputs.logits, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
all_preds.extend(predicted.cpu().numpy())
all_labels.extend(labels.cpu().numpy())
val_loss /= len(val_loader)
val_losses.append(val_loss)
val_accuracy = 100 * correct / total
# Hitung presisi, recall, dan F1-score untuk validasi
precision, recall, f1, _ = precision_recall_fscore_support(
all_labels, all_preds, average='weighted', zero_division=0
)
print(f'Epoch {epoch+1}, Train Loss: {train_loss_epoch:.4f}, Val Loss: {val_loss:.4f}, Val Accuracy: {val_accuracy:.2f}%')
print(f'Precision: {precision:.4f}, Recall: {recall:.4f}, F1-Score: {f1:.4f}')
# Laporan klasifikasi per tag untuk validasi
unique_labels = sorted(set(all_labels))
filtered_tags = [tags[i] for i in unique_labels]
print("\nValidation Classification Report:")
print(classification_report(all_labels, all_preds, labels=unique_labels, target_names=filtered_tags, zero_division=0))
# Early stopping
if val_loss < best_val_loss:
best_val_loss = val_loss
counter = 0
# Simpan model terbaik
model.save_pretrained("indobert_model")
tokenizer.save_pretrained("indobert_model")
else:
counter += 1
if counter >= patience:
print("Early stopping triggered")
break
# Evaluasi pada data uji dari test_dataset.json
model.eval()
test_correct = 0
test_total = 0
test_preds = []
test_labels = []
with torch.no_grad():
for batch in test_loader:
inputs = {k: v.to(device) for k, v in batch.items() if k != 'labels'}
labels = batch['labels'].to(device)
outputs = model(**inputs, labels=labels)
_, predicted = torch.max(outputs.logits, 1)
test_total += labels.size(0)
test_correct += (predicted == labels).sum().item()
test_preds.extend(predicted.cpu().numpy())
test_labels.extend(labels.cpu().numpy())
test_accuracy = 100 * test_correct / test_total
test_precision, test_recall, test_f1, _ = precision_recall_fscore_support(
test_labels, test_preds, average='weighted', zero_division=0
)
# Laporan klasifikasi untuk data uji
unique_test_labels = sorted(set(test_labels))
filtered_test_tags = [tags[i] for i in unique_test_labels]
print(f'\nTest Accuracy: {test_accuracy:.2f}%')
print(f'Test Precision: {test_precision:.4f}, Recall: {test_recall:.4f}, F1-Score: {test_f1:.4f}')
print("\nTest Classification Report:")
print(classification_report(test_labels, test_preds, labels=unique_test_labels, target_names=filtered_test_tags, zero_division=0))
print("Training Selesai. Best model disimpan di indobert_model/")
# Plot kurva loss
plt.figure(figsize=(10, 6))
plt.plot(range(1, len(train_losses) + 1), train_losses, label='Train Loss', marker='o')
plt.plot(range(1, len(val_losses) + 1), val_losses, label='Validation Loss', marker='s')
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.title('Kurva Penurunan Loss Pelatihan dan Validasi')
plt.legend()
plt.grid(True)
plt.savefig('loss_curve.png')
plt.show() |