File size: 7,640 Bytes
403d36c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
from transformers import AutoTokenizer, AutoModelForSequenceClassification
from torch.utils.data import Dataset, DataLoader
import json
import torch
from sklearn.model_selection import train_test_split
from sklearn.metrics import precision_recall_fscore_support, classification_report
import numpy as np
import matplotlib.pyplot as plt

# Load dataset pelatihan dari datasets_new.json
with open('datasets_new.json', 'r') as f:
    datasets = json.load(f)

texts = []
labels = []
tags = sorted(set(dataset['tag'] for dataset in datasets['intents']))

for dataset in datasets['intents']:
    for pattern in dataset['patterns']:
        texts.append(pattern)
        labels.append(tags.index(dataset['tag']))

# Logging distribusi kelas sebelum pemisahan data
label_counts = np.bincount(labels)
print("Distribusi kelas sebelum pemisahan data:")
for tag, count in zip(tags, label_counts):
    print(f"Tag: {tag}, Jumlah sampel: {count}")

# Split data menjadi train dan val
texts_train, texts_val, labels_train, labels_val = train_test_split(
    texts, labels, test_size=0.2, random_state=42, stratify=labels
)

# Logging distribusi kelas setelah pemisahan
val_label_counts = np.bincount(labels_val, minlength=len(tags))
print("\nDistribusi kelas di data validasi:")
for tag, count in zip(tags, val_label_counts):
    print(f"Tag: {tag}, Jumlah sampel: {count}")

# Load dataset pengujian dari test_dataset.json
with open('test_dataset.json', 'r') as f:
    test_data = json.load(f)

# Ekstrak teks dan intent yang benar
texts_test = [item['text'] for item in test_data]
true_intents = [item['true_intent'] for item in test_data]

# Konversi intent ke indeks label berdasarkan tags
labels_test = [tags.index(intent) for intent in true_intents if intent in tags]

# Periksa apakah ada intent yang tidak ada dalam tags
missing_intents = set(true_intents) - set(tags)
if missing_intents:
    print(f"Peringatan: Intent {missing_intents} tidak ditemukan dalam tags. Pastikan datasets_new.json mencakup semua intent.")

# Inisialisasi tokenizer dan model
tokenizer = AutoTokenizer.from_pretrained("indobenchmark/indobert-base-p1")
model = AutoModelForSequenceClassification.from_pretrained("indobenchmark/indobert-base-p1", num_labels=len(tags))

class IndoBERTDataset(Dataset):
    def __init__(self, texts, labels):
        self.texts = texts
        self.labels = labels

    def __getitem__(self, idx):
        encoding = tokenizer(self.texts[idx], padding='max_length', truncation=True, max_length=20, return_tensors='pt')
        return {
            'input_ids': encoding['input_ids'].squeeze(),
            'attention_mask': encoding['attention_mask'].squeeze(),
            'labels': torch.tensor(self.labels[idx], dtype=torch.long)
        }

    def __len__(self):
        return len(self.texts)

# Buat dataset dan dataloader untuk train, val, dan test
train_dataset = IndoBERTDataset(texts_train, labels_train)
val_dataset = IndoBERTDataset(texts_val, labels_val)
test_dataset = IndoBERTDataset(texts_test, labels_test)

train_loader = DataLoader(train_dataset, batch_size=8, shuffle=True)
val_loader = DataLoader(val_dataset, batch_size=8)
test_loader = DataLoader(test_dataset, batch_size=8)

# Pelatihan
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model.to(device)
optimizer = torch.optim.AdamW(model.parameters(), lr=1e-5)

num_epochs = 10
best_val_loss = float('inf')
patience = 3
counter = 0

# Lists untuk menyimpan loss pelatihan dan validasi
train_losses = []
val_losses = []

for epoch in range(num_epochs):
    model.train()
    train_loss_epoch = 0
    for batch in train_loader:
        inputs = {k: v.to(device) for k, v in batch.items() if k != 'labels'}
        labels = batch['labels'].to(device)
        outputs = model(**inputs, labels=labels)
        loss = outputs.loss
        train_loss_epoch += loss.item()
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
    
    # Hitung rata-rata loss pelatihan per epoch
    train_loss_epoch /= len(train_loader)
    train_losses.append(train_loss_epoch)

    # Validasi
    model.eval()
    val_loss = 0
    correct = 0
    total = 0
    all_preds = []
    all_labels = []
    with torch.no_grad():
        for batch in val_loader:
            inputs = {k: v.to(device) for k, v in batch.items() if k != 'labels'}
            labels = batch['labels'].to(device)
            outputs = model(**inputs, labels=labels)
            val_loss += outputs.loss.item()
            _, predicted = torch.max(outputs.logits, 1)
            total += labels.size(0)
            correct += (predicted == labels).sum().item()
            all_preds.extend(predicted.cpu().numpy())
            all_labels.extend(labels.cpu().numpy())

    val_loss /= len(val_loader)
    val_losses.append(val_loss)
    val_accuracy = 100 * correct / total

    # Hitung presisi, recall, dan F1-score untuk validasi
    precision, recall, f1, _ = precision_recall_fscore_support(
        all_labels, all_preds, average='weighted', zero_division=0
    )
    print(f'Epoch {epoch+1}, Train Loss: {train_loss_epoch:.4f}, Val Loss: {val_loss:.4f}, Val Accuracy: {val_accuracy:.2f}%')
    print(f'Precision: {precision:.4f}, Recall: {recall:.4f}, F1-Score: {f1:.4f}')

    # Laporan klasifikasi per tag untuk validasi
    unique_labels = sorted(set(all_labels))
    filtered_tags = [tags[i] for i in unique_labels]
    print("\nValidation Classification Report:")
    print(classification_report(all_labels, all_preds, labels=unique_labels, target_names=filtered_tags, zero_division=0))

    # Early stopping
    if val_loss < best_val_loss:
        best_val_loss = val_loss
        counter = 0
        # Simpan model terbaik
        model.save_pretrained("indobert_model")
        tokenizer.save_pretrained("indobert_model")
    else:
        counter += 1
        if counter >= patience:
            print("Early stopping triggered")
            break

# Evaluasi pada data uji dari test_dataset.json
model.eval()
test_correct = 0
test_total = 0
test_preds = []
test_labels = []
with torch.no_grad():
    for batch in test_loader:
        inputs = {k: v.to(device) for k, v in batch.items() if k != 'labels'}
        labels = batch['labels'].to(device)
        outputs = model(**inputs, labels=labels)
        _, predicted = torch.max(outputs.logits, 1)
        test_total += labels.size(0)
        test_correct += (predicted == labels).sum().item()
        test_preds.extend(predicted.cpu().numpy())
        test_labels.extend(labels.cpu().numpy())

test_accuracy = 100 * test_correct / test_total
test_precision, test_recall, test_f1, _ = precision_recall_fscore_support(
    test_labels, test_preds, average='weighted', zero_division=0
)

# Laporan klasifikasi untuk data uji
unique_test_labels = sorted(set(test_labels))
filtered_test_tags = [tags[i] for i in unique_test_labels]
print(f'\nTest Accuracy: {test_accuracy:.2f}%')
print(f'Test Precision: {test_precision:.4f}, Recall: {test_recall:.4f}, F1-Score: {test_f1:.4f}')
print("\nTest Classification Report:")
print(classification_report(test_labels, test_preds, labels=unique_test_labels, target_names=filtered_test_tags, zero_division=0))

print("Training Selesai. Best model disimpan di indobert_model/")

# Plot kurva loss
plt.figure(figsize=(10, 6))
plt.plot(range(1, len(train_losses) + 1), train_losses, label='Train Loss', marker='o')
plt.plot(range(1, len(val_losses) + 1), val_losses, label='Validation Loss', marker='s')
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.title('Kurva Penurunan Loss Pelatihan dan Validasi')
plt.legend()
plt.grid(True)
plt.savefig('loss_curve.png')
plt.show()