Vriti29 commited on
Commit
4a45d37
·
1 Parent(s): 47fbcd8

Create roberta-base-squad2

Browse files
Files changed (1) hide show
  1. deepset/roberta-base-squad2 +175 -0
deepset/roberta-base-squad2 ADDED
@@ -0,0 +1,175 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -*- coding: utf-8 -*-
2
+ """Untitled7.ipynb
3
+ Automatically generated by Colab.
4
+ Original file is located at
5
+ https://colab.research.google.com/drive/1MWc3B3JSbW5VvEuftDi2WoCjUWN1CtVj
6
+ """
7
+ pip install transformers datasets evaluate accelerate
8
+ data_files = {
9
+ "train": "./train.json", # If saved in current working directory
10
+ "validation": "./validation.json"
11
+ }
12
+ from google.colab import files
13
+ uploaded = files.upload() # Select and upload your train.json and validation.json files
14
+ from google.colab import files
15
+ uploaded = files.upload() # Select and upload your train.json and validation.json files
16
+ import json
17
+ import pandas as pd
18
+ from datasets import Dataset, DatasetDict
19
+ with open("train.json", "r") as f:
20
+ train_data = json.load(f)
21
+ with open("validation.json", "r") as f:
22
+ validation_data = json.load(f)
23
+ train_list = train_data.get("data", [])
24
+ validation_list = validation_data.get("data", [])
25
+ train_df = pd.DataFrame(train_list)
26
+ validation_df = pd.DataFrame(validation_list)
27
+ train_dataset = Dataset.from_pandas(train_df)
28
+ validation_dataset = Dataset.from_pandas(validation_df)
29
+ dataset = DatasetDict({
30
+ "train": train_dataset,
31
+ "validation": validation_dataset
32
+ })
33
+ print(dataset)
34
+ from transformers import AutoTokenizer, AutoModelForQuestionAnswering
35
+ model_checkpoint = "deepset/roberta-base-squad2"
36
+ tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
37
+ model = AutoModelForQuestionAnswering.from_pretrained(model_checkpoint)
38
+ def prepare_features(examples):
39
+ tokenized_examples = {
40
+ "input_ids": [],
41
+ "attention_mask": [],
42
+ "offset_mapping": [],
43
+ "overflow_to_sample_mapping": [],
44
+ "start_positions": [],
45
+ "end_positions": [],
46
+ "example_id": [], # Add example_id to link back to original examples
47
+ }
48
+
49
+ for example_index, paragraphs in enumerate(examples["paragraphs"]):
50
+ for para in paragraphs:
51
+ context = para["context"]
52
+ for qa in para["qas"]:
53
+ question = qa["question"]
54
+ answers = qa["answers"] # This is a list of answer dictionaries
55
+ tokenized = tokenizer(
56
+ question,
57
+ context,
58
+ truncation="only_second",
59
+ max_length=384,
60
+ stride=128,
61
+ return_overflowing_tokens=True,
62
+ return_offsets_mapping=True,
63
+ padding="max_length"
64
+ )
65
+ sample_mapping = tokenized.pop("overflow_to_sample_mapping")
66
+ offset_mapping = tokenized.pop("offset_mapping")
67
+ for i, offsets in enumerate(offset_mapping):
68
+ input_ids = tokenized["input_ids"][i]
69
+ cls_index = input_ids.index(tokenizer.cls_token_id)
70
+ sequence_ids = tokenized.sequence_ids(i)
71
+ start_position = cls_index
72
+ end_position = cls_index
73
+ if len(answers) > 0:
74
+ first_answer = answers[0] # Get the first answer dictionary
75
+ start_char = first_answer["answer_start"]
76
+ end_char = start_char + len(first_answer["text"])
77
+ token_start_index = 0
78
+ while sequence_ids[token_start_index] != (1 if tokenizer.is_fast else 0):
79
+ token_start_index += 1
80
+ token_end_index = len(input_ids) - 1
81
+ while sequence_ids[token_end_index] != (1 if tokenizer.is_fast else 0):
82
+ token_end_index -= 1
83
+ if offsets[token_start_index][0] <= start_char and offsets[token_end_index][1] >= end_char:
84
+ # Move the token_start_index and token_end_index to the two ends of the answer
85
+ while token_start_index < len(offsets) and offsets[token_start_index][0] <= start_char:
86
+ token_start_index += 1
87
+ start_position = token_start_index - 1
88
+
89
+ while token_end_index >= 0 and offsets[token_end_index][1] >= end_char:
90
+ token_end_index -= 1
91
+ end_position = token_end_index + 1
92
+
93
+ tokenized_examples["input_ids"].append(input_ids)
94
+ tokenized_examples["attention_mask"].append(tokenized["attention_mask"][i])
95
+ tokenized_examples["offset_mapping"].append(offsets)
96
+ tokenized_examples["overflow_to_sample_mapping"].append(example_index) # Map back to the original example index in the batch
97
+ tokenized_examples["start_positions"].append(start_position)
98
+ tokenized_examples["end_positions"].append(end_position)
99
+ tokenized_examples["example_id"].append(qa.get("id", f"{examples.get('title', ['no_title'])[example_index]}_{len(tokenized_examples['input_ids'])}"))
100
+ tokenized_dataset = dataset.map(
101
+ prepare_features,
102
+ batched=True,
103
+ remove_columns=dataset["train"].column_names # Remove original columns after processing
104
+ )
105
+ print(tokenized_dataset)
106
+ from transformers import TrainingArguments, Trainer
107
+ training_args = TrainingArguments(
108
+ output_dir="./finetuned-roberta-squad2",
109
+ eval_strategy="epoch", # Corrected argument name
110
+ save_strategy="epoch", # Match save strategy to evaluation strategy
111
+ learning_rate=2e-5,
112
+ num_train_epochs=3,
113
+ weight_decay=0.01,
114
+ per_device_train_batch_size=8,
115
+ per_device_eval_batch_size=8,
116
+ save_total_limit=1,
117
+ load_best_model_at_end=True,
118
+ )
119
+ trainer = Trainer(
120
+ model=model,
121
+ args=training_args,
122
+ train_dataset=tokenized_dataset["train"],
123
+ eval_dataset=tokenized_dataset["validation"],
124
+ tokenizer=tokenizer
125
+ )
126
+ trainer.train()
127
+ trainer.save_model("./finetuned-roberta-squad2")
128
+ tokenizer.save_pretrained("./finetuned-roberta-squad2")
129
+ # EVALUATION
130
+ !pip install bert-score -q
131
+ from transformers import pipeline
132
+ qa_pipeline = pipeline("question-answering", model="./finetuned-roberta-squad2", tokenizer=tokenizer)
133
+ examples = dataset["validation"]
134
+ predictions = []
135
+ references = []
136
+ for example in examples:
137
+ for para in example["paragraphs"]:
138
+ context = para["context"]
139
+ for qa in para["qas"]:
140
+ question = qa["question"]
141
+ answers = qa["answers"] # This is a list of answer dictionaries
142
+ result = qa_pipeline({
143
+ "context": context,
144
+ "question": question
145
+ })
146
+ predictions.append(result["answer"])
147
+ if len(answers) > 0:
148
+ references.append(answers[0]["text"])
149
+ else:
150
+ references.append("") # Append empty string for unanswerable questions
151
+ from bert_score import score
152
+ P, R, F1 = score(predictions, references, lang="en", model_type="roberta-base")
153
+ print(f"🔹 BERTScore Precision: {P.mean().item():.4f}")
154
+ print(f"🔹 BERTScore Recall: {R.mean().item():.4f}")
155
+ print(f"🔹 BERTScore F1: {F1.mean().item():.4f}")
156
+ from transformers import AutoModel, AutoTokenizer
157
+ import torch
158
+ import torch.nn.functional as F
159
+ # Use sentence transformer or same QA model encoder
160
+ embed_model = AutoModel.from_pretrained("sentence-transformers/all-MiniLM-L6-v2")
161
+ embed_tokenizer = AutoTokenizer.from_pretrained("sentence-transformers/all-MiniLM-L6-v2")
162
+ def get_embedding(text):
163
+ inputs = embed_tokenizer(text, return_tensors="pt", truncation=True, padding=True)
164
+ with torch.no_grad():
165
+ outputs = embed_model(**inputs)
166
+ return outputs.last_hidden_state.mean(dim=1)
167
+ # Compute cosine similarities
168
+ cosine_scores = []
169
+ for pred, ref in zip(predictions, references):
170
+ pred_emb = get_embedding(pred)
171
+ ref_emb = get_embedding(ref)
172
+ cosine_sim = F.cosine_similarity(pred_emb, ref_emb).item()
173
+ cosine_scores.append(cosine_sim)
174
+ avg_cosine = sum(cosine_scores) / len(cosine_scores)
175
+ print(f"🔹 Average Cosine Similarity: {avg_cosine:.4f}")