Spaces:
Running
Running
Update src/app.py
Browse files- src/app.py +209 -147
src/app.py
CHANGED
@@ -4,84 +4,72 @@ import pandas as pd
|
|
4 |
import numpy as np
|
5 |
from pathlib import Path
|
6 |
import sys
|
7 |
-
import plotly.express as px
|
8 |
import plotly.graph_objects as go
|
9 |
from transformers import BertTokenizer
|
10 |
import nltk
|
11 |
|
12 |
# Download required NLTK data
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
nltk.download('punkt_tab')
|
25 |
-
try:
|
26 |
-
nltk.data.find('corpora/wordnet')
|
27 |
-
except LookupError:
|
28 |
-
nltk.download('wordnet')
|
29 |
|
30 |
# Add project root to Python path
|
31 |
project_root = Path(__file__).parent.parent
|
32 |
sys.path.append(str(project_root))
|
33 |
|
34 |
from src.models.hybrid_model import HybridFakeNewsDetector
|
35 |
-
from src.config.config import
|
36 |
from src.data.preprocessor import TextPreprocessor
|
37 |
|
38 |
-
# Custom CSS with Poppins font
|
39 |
st.markdown("""
|
40 |
<style>
|
41 |
-
/* Import Google Fonts */
|
42 |
@import url('https://fonts.googleapis.com/css2?family=Poppins:wght@200;300;400;500;600;700&display=swap');
|
43 |
|
44 |
-
/* Global Styles */
|
45 |
* {
|
46 |
-
|
47 |
-
padding: 0;
|
48 |
box-sizing: border-box;
|
49 |
}
|
50 |
|
51 |
.stApp {
|
52 |
-
|
53 |
-
background: #f8fafc;
|
54 |
min-height: 100vh;
|
55 |
-
color: #
|
56 |
}
|
57 |
|
58 |
-
|
59 |
-
#MainMenu {visibility: visible;}
|
60 |
footer {visibility: hidden;}
|
61 |
.stDeployButton {display: none;}
|
62 |
header {visibility: hidden;}
|
63 |
.stApp > header {visibility: hidden;}
|
64 |
|
65 |
-
/* Container */
|
66 |
-
.container {
|
67 |
max-width: 1200px;
|
68 |
margin: 0 auto;
|
69 |
-
padding:
|
70 |
}
|
71 |
|
72 |
-
/* Header */
|
73 |
-
.header {
|
74 |
-
padding: 1.5rem 0;
|
75 |
text-align: center;
|
|
|
|
|
76 |
}
|
77 |
|
78 |
.header-title {
|
79 |
-
font-size: 2.
|
80 |
font-weight: 700;
|
81 |
-
color: #
|
82 |
-
|
83 |
-
align-items: center;
|
84 |
-
gap: 0.5rem;
|
85 |
}
|
86 |
|
87 |
/* Hero Section */
|
@@ -90,6 +78,7 @@ st.markdown("""
|
|
90 |
align-items: center;
|
91 |
gap: 2rem;
|
92 |
margin-bottom: 2rem;
|
|
|
93 |
}
|
94 |
|
95 |
.hero-left {
|
@@ -112,16 +101,16 @@ st.markdown("""
|
|
112 |
}
|
113 |
|
114 |
.hero-title {
|
115 |
-
font-size:
|
116 |
font-weight: 700;
|
117 |
-
color: #
|
118 |
margin-bottom: 0.5rem;
|
119 |
}
|
120 |
|
121 |
.hero-text {
|
122 |
-
font-size:
|
123 |
-
color: #
|
124 |
-
line-height: 1.
|
125 |
max-width: 450px;
|
126 |
}
|
127 |
|
@@ -129,19 +118,20 @@ st.markdown("""
|
|
129 |
.about-section {
|
130 |
margin-bottom: 2rem;
|
131 |
text-align: center;
|
|
|
132 |
}
|
133 |
|
134 |
.about-title {
|
135 |
-
font-size:
|
136 |
font-weight: 600;
|
137 |
-
color: #
|
138 |
margin-bottom: 0.5rem;
|
139 |
}
|
140 |
|
141 |
.about-text {
|
142 |
-
font-size:
|
143 |
-
color: #
|
144 |
-
line-height: 1.
|
145 |
max-width: 600px;
|
146 |
margin: 0 auto;
|
147 |
}
|
@@ -156,8 +146,7 @@ st.markdown("""
|
|
156 |
border-radius: 8px !important;
|
157 |
border: 1px solid #d1d5db !important;
|
158 |
padding: 1rem !important;
|
159 |
-
font-size:
|
160 |
-
font-family: 'Poppins', sans-serif !important;
|
161 |
background: #ffffff !important;
|
162 |
min-height: 150px !important;
|
163 |
transition: all 0.2s ease !important;
|
@@ -179,12 +168,12 @@ st.markdown("""
|
|
179 |
color: white !important;
|
180 |
border-radius: 8px !important;
|
181 |
padding: 0.75rem 2rem !important;
|
182 |
-
font-size:
|
183 |
font-weight: 600 !important;
|
184 |
-
font-family: 'Poppins', sans-serif !important;
|
185 |
transition: all 0.2s ease !important;
|
186 |
border: none !important;
|
187 |
width: 100% !important;
|
|
|
188 |
}
|
189 |
|
190 |
.stButton > button:hover {
|
@@ -197,6 +186,9 @@ st.markdown("""
|
|
197 |
margin-top: 1rem;
|
198 |
padding: 1rem;
|
199 |
border-radius: 8px;
|
|
|
|
|
|
|
200 |
}
|
201 |
|
202 |
.result-card {
|
@@ -218,7 +210,7 @@ st.markdown("""
|
|
218 |
|
219 |
.prediction-badge {
|
220 |
font-weight: 600;
|
221 |
-
font-size:
|
222 |
margin-bottom: 0.5rem;
|
223 |
display: flex;
|
224 |
align-items: center;
|
@@ -228,7 +220,7 @@ st.markdown("""
|
|
228 |
.confidence-score {
|
229 |
font-weight: 600;
|
230 |
margin-left: auto;
|
231 |
-
font-size:
|
232 |
}
|
233 |
|
234 |
/* Chart Containers */
|
@@ -236,78 +228,149 @@ st.markdown("""
|
|
236 |
padding: 1rem;
|
237 |
border-radius: 8px;
|
238 |
margin: 1rem 0;
|
|
|
|
|
|
|
239 |
}
|
240 |
|
241 |
-
/*
|
242 |
-
.
|
243 |
-
|
244 |
-
|
|
|
|
|
|
|
245 |
}
|
246 |
|
247 |
-
|
248 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
249 |
}
|
250 |
</style>
|
251 |
""", unsafe_allow_html=True)
|
252 |
|
253 |
@st.cache_resource
|
254 |
-
def load_model_and_tokenizer():
|
255 |
"""Load the model and tokenizer (cached)."""
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
269 |
|
270 |
@st.cache_resource
|
271 |
-
def get_preprocessor():
|
272 |
"""Get the text preprocessor (cached)."""
|
273 |
-
|
|
|
|
|
|
|
|
|
274 |
|
275 |
-
def predict_news(text):
|
276 |
"""Predict if the given news is fake or real."""
|
277 |
model, tokenizer = load_model_and_tokenizer()
|
|
|
|
|
278 |
preprocessor = get_preprocessor()
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
encoding['input_ids'],
|
292 |
-
encoding['attention_mask']
|
293 |
)
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
'
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
310 |
"""Plot prediction confidence with simplified styling."""
|
|
|
|
|
311 |
fig = go.Figure(data=[
|
312 |
go.Bar(
|
313 |
x=list(probabilities.keys()),
|
@@ -330,8 +393,10 @@ def plot_confidence(probabilities):
|
|
330 |
)
|
331 |
return fig
|
332 |
|
333 |
-
def plot_attention(text, attention_weights):
|
334 |
"""Plot attention weights with simplified styling."""
|
|
|
|
|
335 |
tokens = text.split()[:20]
|
336 |
attention_weights = attention_weights[:len(tokens)]
|
337 |
if isinstance(attention_weights, (list, np.ndarray)):
|
@@ -358,47 +423,43 @@ def plot_attention(text, attention_weights):
|
|
358 |
return fig
|
359 |
|
360 |
def main():
|
|
|
|
|
361 |
|
362 |
-
# Header
|
363 |
st.markdown("""
|
364 |
-
<div class="header">
|
365 |
-
<
|
366 |
-
<h1 class="header-title">🛡️ TruthCheck</h1>
|
367 |
-
</div>
|
368 |
</div>
|
369 |
""", unsafe_allow_html=True)
|
370 |
|
371 |
# Hero Section
|
372 |
st.markdown("""
|
373 |
-
<div class="
|
374 |
-
<div class="hero">
|
375 |
-
<
|
376 |
-
|
377 |
-
|
378 |
-
|
379 |
-
|
380 |
-
|
381 |
-
<
|
382 |
-
<img src="https://images.unsplash.com/photo-1593642532973-d31b97d0fad2?ixlib=rb-4.0.3&auto=format&fit=crop&w=500&q=80" alt="Fake News Detector" onerror="this.src='https://via.placeholder.com/500x300.png?text=Fake+News+Detector'">
|
383 |
-
</div>
|
384 |
</div>
|
385 |
</div>
|
386 |
""", unsafe_allow_html=True)
|
387 |
|
388 |
# About Section
|
389 |
st.markdown("""
|
390 |
-
<div class="
|
391 |
-
<
|
392 |
-
|
393 |
-
|
394 |
-
|
395 |
-
</p>
|
396 |
-
</div>
|
397 |
</div>
|
398 |
""", unsafe_allow_html=True)
|
399 |
|
400 |
# Input Section
|
401 |
-
st.markdown('<div class="
|
402 |
news_text = st.text_area(
|
403 |
"Analyze a News Article",
|
404 |
height=150,
|
@@ -408,18 +469,16 @@ def main():
|
|
408 |
st.markdown('</div>', unsafe_allow_html=True)
|
409 |
|
410 |
# Analyze Button
|
411 |
-
st.markdown('<div class="container">', unsafe_allow_html=True)
|
412 |
col1, col2, col3 = st.columns([1, 2, 1])
|
413 |
with col2:
|
414 |
analyze_button = st.button("🔍 Analyze Now", key="analyze_button")
|
415 |
-
st.markdown('</div>', unsafe_allow_html=True)
|
416 |
|
417 |
if analyze_button:
|
418 |
if news_text and len(news_text.strip()) > 10:
|
419 |
with st.spinner("Analyzing article..."):
|
420 |
-
|
421 |
-
|
422 |
-
st.markdown('<div class="
|
423 |
|
424 |
# Prediction Result
|
425 |
col1, col2 = st.columns([1, 1], gap="medium")
|
@@ -428,14 +487,14 @@ def main():
|
|
428 |
st.markdown(f'''
|
429 |
<div class="result-card fake-news">
|
430 |
<div class="prediction-badge">🚨 Fake News Detected <span class="confidence-score">{result["confidence"]:.1%}</span></div>
|
431 |
-
<p>Our AI has identified this content as likely misinformation based on linguistic patterns and
|
432 |
</div>
|
433 |
''', unsafe_allow_html=True)
|
434 |
else:
|
435 |
st.markdown(f'''
|
436 |
<div class="result-card real-news">
|
437 |
<div class="prediction-badge">✅ Authentic News <span class="confidence-score">{result["confidence"]:.1%}</span></div>
|
438 |
-
<p>This content appears
|
439 |
</div>
|
440 |
''', unsafe_allow_html=True)
|
441 |
|
@@ -447,15 +506,18 @@ def main():
|
|
447 |
# Attention Analysis
|
448 |
st.markdown('<div class="chart-container">', unsafe_allow_html=True)
|
449 |
st.plotly_chart(plot_attention(news_text, result['attention_weights']), use_container_width=True)
|
450 |
-
st.markdown('</div></div
|
451 |
-
except Exception as e:
|
452 |
-
st.markdown('<div class="container">', unsafe_allow_html=True)
|
453 |
-
st.error(f"Error: {str(e)}. Please try again or contact support.")
|
454 |
-
st.markdown('</div>', unsafe_allow_html=True)
|
455 |
else:
|
456 |
-
st.markdown('<div class="container">', unsafe_allow_html=True)
|
457 |
st.error("Please enter a news article (at least 10 words) for analysis.")
|
458 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
459 |
|
460 |
if __name__ == "__main__":
|
461 |
main()
|
|
|
4 |
import numpy as np
|
5 |
from pathlib import Path
|
6 |
import sys
|
|
|
7 |
import plotly.graph_objects as go
|
8 |
from transformers import BertTokenizer
|
9 |
import nltk
|
10 |
|
11 |
# Download required NLTK data
|
12 |
+
nltk_data = {
|
13 |
+
'tokenizers/punkt': 'punkt',
|
14 |
+
'corpora/stopwords': 'stopwords',
|
15 |
+
'tokenizers/punkt_tab': 'punkt_tab',
|
16 |
+
'corpora/wordnet': 'wordnet'
|
17 |
+
}
|
18 |
+
for resource, package in nltk_data.items():
|
19 |
+
try:
|
20 |
+
nltk.data.find(resource)
|
21 |
+
except LookupError:
|
22 |
+
nltk.download(package)
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
# Add project root to Python path
|
25 |
project_root = Path(__file__).parent.parent
|
26 |
sys.path.append(str(project_root))
|
27 |
|
28 |
from src.models.hybrid_model import HybridFakeNewsDetector
|
29 |
+
from src.config.config import BERT_MODEL_NAME, LSTM_HIDDEN_SIZE, LSTM_NUM_LAYERS, DROPOUT_RATE, SAVED_MODELS_DIR, MAX_SEQUENCE_LENGTH
|
30 |
from src.data.preprocessor import TextPreprocessor
|
31 |
|
32 |
+
# Custom CSS with Poppins font
|
33 |
st.markdown("""
|
34 |
<style>
|
|
|
35 |
@import url('https://fonts.googleapis.com/css2?family=Poppins:wght@200;300;400;500;600;700&display=swap');
|
36 |
|
|
|
37 |
* {
|
38 |
+
font-family: 'Poppins', sans-serif !important;
|
|
|
39 |
box-sizing: border-box;
|
40 |
}
|
41 |
|
42 |
.stApp {
|
43 |
+
background: #ffffff;
|
|
|
44 |
min-height: 100vh;
|
45 |
+
color: #1f2a44;
|
46 |
}
|
47 |
|
48 |
+
#MainMenu {visibility: hidden;}
|
|
|
49 |
footer {visibility: hidden;}
|
50 |
.stDeployButton {display: none;}
|
51 |
header {visibility: hidden;}
|
52 |
.stApp > header {visibility: hidden;}
|
53 |
|
54 |
+
/* Main Container */
|
55 |
+
.main-container {
|
56 |
max-width: 1200px;
|
57 |
margin: 0 auto;
|
58 |
+
padding: 1rem 2rem;
|
59 |
}
|
60 |
|
61 |
+
/* Header Section */
|
62 |
+
.header-section {
|
|
|
63 |
text-align: center;
|
64 |
+
margin-bottom: 2.5rem;
|
65 |
+
padding: 1.5rem 0;
|
66 |
}
|
67 |
|
68 |
.header-title {
|
69 |
+
font-size: 2.25rem;
|
70 |
font-weight: 700;
|
71 |
+
color: #1f2a44;
|
72 |
+
margin: 0;
|
|
|
|
|
73 |
}
|
74 |
|
75 |
/* Hero Section */
|
|
|
78 |
align-items: center;
|
79 |
gap: 2rem;
|
80 |
margin-bottom: 2rem;
|
81 |
+
padding: 0 1rem;
|
82 |
}
|
83 |
|
84 |
.hero-left {
|
|
|
101 |
}
|
102 |
|
103 |
.hero-title {
|
104 |
+
font-size: 2.5rem;
|
105 |
font-weight: 700;
|
106 |
+
color: #1f2a44;
|
107 |
margin-bottom: 0.5rem;
|
108 |
}
|
109 |
|
110 |
.hero-text {
|
111 |
+
font-size: 1rem;
|
112 |
+
color: #6b7280;
|
113 |
+
line-height: 1.6;
|
114 |
max-width: 450px;
|
115 |
}
|
116 |
|
|
|
118 |
.about-section {
|
119 |
margin-bottom: 2rem;
|
120 |
text-align: center;
|
121 |
+
padding: 0 1rem;
|
122 |
}
|
123 |
|
124 |
.about-title {
|
125 |
+
font-size: 1.75rem;
|
126 |
font-weight: 600;
|
127 |
+
color: #1f2a44;
|
128 |
margin-bottom: 0.5rem;
|
129 |
}
|
130 |
|
131 |
.about-text {
|
132 |
+
font-size: 0.95rem;
|
133 |
+
color: #6b7280;
|
134 |
+
line-height: 1.6;
|
135 |
max-width: 600px;
|
136 |
margin: 0 auto;
|
137 |
}
|
|
|
146 |
border-radius: 8px !important;
|
147 |
border: 1px solid #d1d5db !important;
|
148 |
padding: 1rem !important;
|
149 |
+
font-size: 1rem !important;
|
|
|
150 |
background: #ffffff !important;
|
151 |
min-height: 150px !important;
|
152 |
transition: all 0.2s ease !important;
|
|
|
168 |
color: white !important;
|
169 |
border-radius: 8px !important;
|
170 |
padding: 0.75rem 2rem !important;
|
171 |
+
font-size: 1rem !important;
|
172 |
font-weight: 600 !important;
|
|
|
173 |
transition: all 0.2s ease !important;
|
174 |
border: none !important;
|
175 |
width: 100% !important;
|
176 |
+
max-width: 300px;
|
177 |
}
|
178 |
|
179 |
.stButton > button:hover {
|
|
|
186 |
margin-top: 1rem;
|
187 |
padding: 1rem;
|
188 |
border-radius: 8px;
|
189 |
+
max-width: 1200px;
|
190 |
+
margin-left: auto;
|
191 |
+
margin-right: auto;
|
192 |
}
|
193 |
|
194 |
.result-card {
|
|
|
210 |
|
211 |
.prediction-badge {
|
212 |
font-weight: 600;
|
213 |
+
font-size: 1rem;
|
214 |
margin-bottom: 0.5rem;
|
215 |
display: flex;
|
216 |
align-items: center;
|
|
|
220 |
.confidence-score {
|
221 |
font-weight: 600;
|
222 |
margin-left: auto;
|
223 |
+
font-size: 1rem;
|
224 |
}
|
225 |
|
226 |
/* Chart Containers */
|
|
|
228 |
padding: 1rem;
|
229 |
border-radius: 8px;
|
230 |
margin: 1rem 0;
|
231 |
+
max-width: 1200px;
|
232 |
+
margin-left: auto;
|
233 |
+
margin-right: auto;
|
234 |
}
|
235 |
|
236 |
+
/* Footer */
|
237 |
+
.footer {
|
238 |
+
border-top: 1px solid #e5e7eb;
|
239 |
+
padding: 1.5rem 0;
|
240 |
+
text-align: center;
|
241 |
+
max-width: 1200px;
|
242 |
+
margin: 2rem auto 0;
|
243 |
}
|
244 |
|
245 |
+
/* Responsive Design */
|
246 |
+
@media (max-width: 1024px) {
|
247 |
+
.hero {
|
248 |
+
flex-direction: column;
|
249 |
+
text-align: center;
|
250 |
+
}
|
251 |
+
.hero-right img {
|
252 |
+
max-width: 80%;
|
253 |
+
}
|
254 |
+
}
|
255 |
+
|
256 |
+
@media (max-width: 768px) {
|
257 |
+
.header-title {
|
258 |
+
font-size: 1.75rem;
|
259 |
+
}
|
260 |
+
.hero-title {
|
261 |
+
font-size: 2rem;
|
262 |
+
}
|
263 |
+
.hero-text {
|
264 |
+
font-size: 0.9rem;
|
265 |
+
}
|
266 |
+
.about-title {
|
267 |
+
font-size: 1.5rem;
|
268 |
+
}
|
269 |
+
.about-text {
|
270 |
+
font-size: 0.9rem;
|
271 |
+
}
|
272 |
+
}
|
273 |
+
|
274 |
+
@media (max-width: 480px) {
|
275 |
+
.header-title {
|
276 |
+
font-size: 1.5rem;
|
277 |
+
}
|
278 |
+
.hero-title {
|
279 |
+
font-size: 1.75rem;
|
280 |
+
}
|
281 |
+
.hero-text {
|
282 |
+
font-size: 0.85rem;
|
283 |
+
}
|
284 |
+
.about-title {
|
285 |
+
font-size: 1.25rem;
|
286 |
+
}
|
287 |
+
.about-text {
|
288 |
+
font-size: 0.85rem;
|
289 |
+
}
|
290 |
}
|
291 |
</style>
|
292 |
""", unsafe_allow_html=True)
|
293 |
|
294 |
@st.cache_resource
|
295 |
+
def load_model_and_tokenizer() -> tuple[HybridFakeNewsDetector, BertTokenizer] | tuple[None, None]:
|
296 |
"""Load the model and tokenizer (cached)."""
|
297 |
+
try:
|
298 |
+
model = HybridFakeNewsDetector(
|
299 |
+
bert_model_name=BERT_MODEL_NAME,
|
300 |
+
lstm_hidden_size=LSTM_HIDDEN_SIZE,
|
301 |
+
lstm_num_layers=LSTM_NUM_LAYERS,
|
302 |
+
dropout_rate=DROPOUT_RATE
|
303 |
+
)
|
304 |
+
model_path = SAVED_MODELS_DIR / "final_model.pt"
|
305 |
+
if not model_path.exists():
|
306 |
+
st.error("Model file not found. Please ensure 'final_model.pt' is in the models/saved directory.")
|
307 |
+
return None, None
|
308 |
+
state_dict = torch.load(model_path, map_location=torch.device('cpu'))
|
309 |
+
model_state_dict = model.state_dict()
|
310 |
+
filtered_state_dict = {k: v for k, v in state_dict.items() if k in model_state_dict}
|
311 |
+
model.load_state_dict(filtered_state_dict, strict=False)
|
312 |
+
model.eval()
|
313 |
+
tokenizer = BertTokenizer.from_pretrained(BERT_MODEL_NAME)
|
314 |
+
return model, tokenizer
|
315 |
+
except Exception as e:
|
316 |
+
st.error(f"Error loading model or tokenizer: {str(e)}")
|
317 |
+
return None, None
|
318 |
|
319 |
@st.cache_resource
|
320 |
+
def get_preprocessor() -> TextPreprocessor | None:
|
321 |
"""Get the text preprocessor (cached)."""
|
322 |
+
try:
|
323 |
+
return TextPreprocessor()
|
324 |
+
except Exception as e:
|
325 |
+
st.error(f"Error initializing preprocessor: {str(e)}")
|
326 |
+
return None
|
327 |
|
328 |
+
def predict_news(text: str) -> dict | None:
|
329 |
"""Predict if the given news is fake or real."""
|
330 |
model, tokenizer = load_model_and_tokenizer()
|
331 |
+
if model is None or tokenizer is None:
|
332 |
+
return None
|
333 |
preprocessor = get_preprocessor()
|
334 |
+
if preprocessor is None:
|
335 |
+
return None
|
336 |
+
try:
|
337 |
+
processed_text = preprocessor.preprocess_text(text)
|
338 |
+
encoding = tokenizer.encode_plus(
|
339 |
+
processed_text,
|
340 |
+
add_special_tokens=True,
|
341 |
+
max_length=MAX_SEQUENCE_LENGTH,
|
342 |
+
padding='max_length',
|
343 |
+
truncation=True,
|
344 |
+
return_attention_mask=True,
|
345 |
+
return_tensors='pt'
|
|
|
|
|
346 |
)
|
347 |
+
with torch.no_grad():
|
348 |
+
outputs = model(
|
349 |
+
encoding['input_ids'],
|
350 |
+
encoding['attention_mask']
|
351 |
+
)
|
352 |
+
probabilities = torch.softmax(outputs['logits'], dim=1)
|
353 |
+
prediction = torch.argmax(outputs['logits'], dim=1)
|
354 |
+
attention_weights = outputs.get('attention_weights', torch.zeros(1))
|
355 |
+
attention_weights_np = attention_weights[0].cpu().numpy()
|
356 |
+
return {
|
357 |
+
'prediction': prediction.item(),
|
358 |
+
'label': 'FAKE' if prediction.item() == 1 else 'REAL',
|
359 |
+
'confidence': torch.max(probabilities, dim=1)[0].item(),
|
360 |
+
'probabilities': {
|
361 |
+
'REAL': probabilities[0][0].item(),
|
362 |
+
'FAKE': probabilities[0][1].item()
|
363 |
+
},
|
364 |
+
'attention_weights': attention_weights_np
|
365 |
+
}
|
366 |
+
except Exception as e:
|
367 |
+
st.error(f"Prediction error: {str(e)}")
|
368 |
+
return None
|
369 |
+
|
370 |
+
def plot_confidence(probabilities: dict) -> go.Figure:
|
371 |
"""Plot prediction confidence with simplified styling."""
|
372 |
+
if not probabilities or not isinstance(probabilities, dict):
|
373 |
+
return go.Figure()
|
374 |
fig = go.Figure(data=[
|
375 |
go.Bar(
|
376 |
x=list(probabilities.keys()),
|
|
|
393 |
)
|
394 |
return fig
|
395 |
|
396 |
+
def plot_attention(text: str, attention_weights: np.ndarray) -> go.Figure:
|
397 |
"""Plot attention weights with simplified styling."""
|
398 |
+
if not text or not attention_weights.size:
|
399 |
+
return go.Figure()
|
400 |
tokens = text.split()[:20]
|
401 |
attention_weights = attention_weights[:len(tokens)]
|
402 |
if isinstance(attention_weights, (list, np.ndarray)):
|
|
|
423 |
return fig
|
424 |
|
425 |
def main():
|
426 |
+
# Main Container
|
427 |
+
st.markdown('<div class="main-container">', unsafe_allow_html=True)
|
428 |
|
429 |
+
# Header Section
|
430 |
st.markdown("""
|
431 |
+
<div class="header-section">
|
432 |
+
<h1 class="header-title">🛡️ TruthCheck - Advanced Fake News Detector</h1>
|
|
|
|
|
433 |
</div>
|
434 |
""", unsafe_allow_html=True)
|
435 |
|
436 |
# Hero Section
|
437 |
st.markdown("""
|
438 |
+
<div class="hero">
|
439 |
+
<div class="hero-left">
|
440 |
+
<h2 class="hero-title">Instant Fake News Detection</h2>
|
441 |
+
<p class="hero-text">
|
442 |
+
Verify news articles with our AI-powered tool, driven by advanced BERT and BiLSTM models for accurate authenticity analysis.
|
443 |
+
</p>
|
444 |
+
</div>
|
445 |
+
<div class="hero-right">
|
446 |
+
<img src="https://images.pexels.com/photos/267350/pexels-photo-267350.jpeg?auto=compress&cs=tinysrgb&w=500" alt="Fake News Illustration" onerror="this.src='https://via.placeholder.com/500x300.png?text=Fake+News+Illustration'">
|
|
|
|
|
447 |
</div>
|
448 |
</div>
|
449 |
""", unsafe_allow_html=True)
|
450 |
|
451 |
# About Section
|
452 |
st.markdown("""
|
453 |
+
<div class="about-section">
|
454 |
+
<h2 class="about-title">About TruthCheck</h2>
|
455 |
+
<p class="about-text">
|
456 |
+
TruthCheck harnesses a hybrid BERT-BiLSTM model to detect fake news with high precision. Simply paste an article below to analyze its authenticity instantly.
|
457 |
+
</p>
|
|
|
|
|
458 |
</div>
|
459 |
""", unsafe_allow_html=True)
|
460 |
|
461 |
# Input Section
|
462 |
+
st.markdown('<div class="input-container">', unsafe_allow_html=True)
|
463 |
news_text = st.text_area(
|
464 |
"Analyze a News Article",
|
465 |
height=150,
|
|
|
469 |
st.markdown('</div>', unsafe_allow_html=True)
|
470 |
|
471 |
# Analyze Button
|
|
|
472 |
col1, col2, col3 = st.columns([1, 2, 1])
|
473 |
with col2:
|
474 |
analyze_button = st.button("🔍 Analyze Now", key="analyze_button")
|
|
|
475 |
|
476 |
if analyze_button:
|
477 |
if news_text and len(news_text.strip()) > 10:
|
478 |
with st.spinner("Analyzing article..."):
|
479 |
+
result = predict_news(news_text)
|
480 |
+
if result:
|
481 |
+
st.markdown('<div class="results-container">', unsafe_allow_html=True)
|
482 |
|
483 |
# Prediction Result
|
484 |
col1, col2 = st.columns([1, 1], gap="medium")
|
|
|
487 |
st.markdown(f'''
|
488 |
<div class="result-card fake-news">
|
489 |
<div class="prediction-badge">🚨 Fake News Detected <span class="confidence-score">{result["confidence"]:.1%}</span></div>
|
490 |
+
<p>Our AI has identified this content as likely misinformation based on linguistic patterns and context.</p>
|
491 |
</div>
|
492 |
''', unsafe_allow_html=True)
|
493 |
else:
|
494 |
st.markdown(f'''
|
495 |
<div class="result-card real-news">
|
496 |
<div class="prediction-badge">✅ Authentic News <span class="confidence-score">{result["confidence"]:.1%}</span></div>
|
497 |
+
<p>This content appears legitimate based on professional writing style and factual consistency.</p>
|
498 |
</div>
|
499 |
''', unsafe_allow_html=True)
|
500 |
|
|
|
506 |
# Attention Analysis
|
507 |
st.markdown('<div class="chart-container">', unsafe_allow_html=True)
|
508 |
st.plotly_chart(plot_attention(news_text, result['attention_weights']), use_container_width=True)
|
509 |
+
st.markdown('</div></div>', unsafe_allow_html=True)
|
|
|
|
|
|
|
|
|
510 |
else:
|
|
|
511 |
st.error("Please enter a news article (at least 10 words) for analysis.")
|
512 |
+
|
513 |
+
# Footer
|
514 |
+
st.markdown("---")
|
515 |
+
st.markdown(
|
516 |
+
'<p style="text-align: center; font-weight: 600; font-size: 16px;">💻 Developed with ❤️ using Streamlit | © 2025</p>',
|
517 |
+
unsafe_allow_html=True
|
518 |
+
)
|
519 |
+
|
520 |
+
st.markdown('</div>', unsafe_allow_html=True) # Close main-container
|
521 |
|
522 |
if __name__ == "__main__":
|
523 |
main()
|