# app.py import streamlit as st import torch from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC, MarianMTModel, MarianTokenizer import soundfile as sf import tempfile # Load models and tokenizers @st.cache_resource def load_models(): # Load ASR model (Wav2Vec2 for Urdu) asr_processor = Wav2Vec2Processor.from_pretrained("m3hrdadfi/wav2vec2-large-xlsr-ur") asr_model = Wav2Vec2ForCTC.from_pretrained("m3hrdadfi/wav2vec2-large-xlsr-ur") # Load translation model (Urdu to German) translation_tokenizer = MarianTokenizer.from_pretrained("Helsinki-NLP/opus-mt-ur-de") translation_model = MarianMTModel.from_pretrained("Helsinki-NLP/opus-mt-ur-de") return asr_processor, asr_model, translation_tokenizer, translation_model asr_processor, asr_model, translation_tokenizer, translation_model = load_models() # Streamlit App UI st.title("Real-Time Urdu to German Voice Translator") st.markdown("Upload an Urdu audio file, and the app will translate it to German.") uploaded_file = st.file_uploader("Upload an audio file (in .wav format)", type=["wav"]) if uploaded_file is not None: with tempfile.NamedTemporaryFile(delete=False) as temp_file: temp_file.write(uploaded_file.read()) temp_file_path = temp_file.name # Load audio file audio_input, sample_rate = sf.read(temp_file_path) # Ensure proper sampling rate if sample_rate != 16000: st.error("Please upload a .wav file with a sampling rate of 16kHz.") else: st.info("Processing the audio...") # Convert speech to text (ASR) input_values = asr_processor(audio_input, return_tensors="pt", sampling_rate=16000).input_values with torch.no_grad(): logits = asr_model(input_values).logits predicted_ids = torch.argmax(logits, dim=-1) transcription = asr_processor.batch_decode(predicted_ids)[0] st.text(f"Transcribed Urdu Text: {transcription}") # Translate Urdu text to German translated = translation_model.generate(**translation_tokenizer(transcription, return_tensors="pt", padding=True)) german_translation = translation_tokenizer.decode(translated[0], skip_special_tokens=True) st.success(f"Translated German Text: {german_translation}")