|
from functools import partial |
|
import torch |
|
import transformers |
|
import math |
|
from torch.optim.lr_scheduler import LambdaLR |
|
|
|
|
|
|
|
last_print_label = '' |
|
|
|
|
|
def _get_fp_half_schedule_with_warmup_lr_lambda(current_step: int, *, num_warmup_steps: int, num_training_steps: int, num_firstepoch_steps: int): |
|
|
|
global last_print_label |
|
print_label = '' |
|
|
|
half_steps = num_training_steps//2 |
|
|
|
num_warmup_steps = min(num_warmup_steps,half_steps) |
|
|
|
if current_step < num_warmup_steps: |
|
print_label = 'Scheduler: Warmup' |
|
elif current_step < half_steps: |
|
print_label = 'Scheduler: Hold' |
|
else: |
|
print_label = 'Scheduler: Annealing' |
|
|
|
if print_label != last_print_label: |
|
print(print_label) |
|
|
|
last_print_label = print_label |
|
|
|
if current_step < num_warmup_steps: |
|
return float(current_step) / float(max(1, num_warmup_steps)) |
|
|
|
if current_step < half_steps: |
|
return 1.0 |
|
|
|
progress = float(current_step - half_steps) / float(max(1, num_training_steps - half_steps)) |
|
num_cycles = 0.5 |
|
return max(0.0, 0.5 * (1.0 + math.cos(math.pi * float(num_cycles) * 2.0 * progress))) |
|
|
|
|
|
def _get_fp_cosine_schedule_with_warmup_lr_lambda(current_step: int, *, num_warmup_steps: int, num_training_steps: int, num_firstepoch_steps: int): |
|
|
|
global last_print_label |
|
print_label = '' |
|
|
|
num_warmup_steps = min(num_warmup_steps,num_firstepoch_steps) |
|
|
|
if current_step < num_warmup_steps: |
|
print_label = 'Scheduler: Warmup' |
|
elif current_step < num_firstepoch_steps: |
|
print_label = 'Scheduler: Hold' |
|
else: |
|
print_label = 'Scheduler: Annealing' |
|
|
|
if print_label != last_print_label: |
|
print(print_label) |
|
|
|
last_print_label = print_label |
|
|
|
if current_step < num_warmup_steps: |
|
return float(current_step) / float(max(1, num_warmup_steps)) |
|
|
|
if current_step < num_firstepoch_steps: |
|
return 1.0 |
|
|
|
progress = float(current_step - num_firstepoch_steps) / float(max(1, num_training_steps - num_firstepoch_steps)) |
|
num_cycles = 0.5 |
|
return max(0.0, 0.5 * (1.0 + math.cos(math.pi * float(num_cycles) * 2.0 * progress))) |
|
|
|
|
|
def custom_cosine_scheduler_with_warmup(optimizer, num_warmup_steps, num_training_steps, num_firstepoch_steps, last_epoch=-1): |
|
""" |
|
Args: |
|
optimizer ([`~torch.optim.Optimizer`]): |
|
The optimizer for which to schedule the learning rate. |
|
num_warmup_steps (`int`): |
|
The number of steps for the warmup phase. |
|
num_training_steps (`int`): |
|
The total number of training steps. |
|
last_epoch (`int`, *optional*, defaults to -1): |
|
The index of the last epoch when resuming training. |
|
|
|
Return: |
|
`torch.optim.lr_scheduler.LambdaLR` with the appropriate schedule. |
|
""" |
|
|
|
lr_lambda = partial( |
|
_get_fp_cosine_schedule_with_warmup_lr_lambda, |
|
num_warmup_steps=num_warmup_steps, |
|
num_training_steps=num_training_steps, |
|
num_firstepoch_steps = num_firstepoch_steps, |
|
) |
|
return LambdaLR(optimizer, lr_lambda, last_epoch) |
|
|
|
def custom_half_scheduler_with_warmup(optimizer, num_warmup_steps, num_training_steps, num_firstepoch_steps, last_epoch=-1): |
|
""" |
|
Args: |
|
optimizer ([`~torch.optim.Optimizer`]): |
|
The optimizer for which to schedule the learning rate. |
|
num_warmup_steps (`int`): |
|
The number of steps for the warmup phase. |
|
num_training_steps (`int`): |
|
The total number of training steps. |
|
last_epoch (`int`, *optional*, defaults to -1): |
|
The index of the last epoch when resuming training. |
|
|
|
Return: |
|
`torch.optim.lr_scheduler.LambdaLR` with the appropriate schedule. |
|
""" |
|
|
|
lr_lambda = partial( |
|
_get_fp_half_schedule_with_warmup_lr_lambda, |
|
num_warmup_steps=num_warmup_steps, |
|
num_training_steps=num_training_steps, |
|
num_firstepoch_steps = num_firstepoch_steps, |
|
) |
|
return LambdaLR(optimizer, lr_lambda, last_epoch) |
|
|
|
class FPSchedulerTrainer(transformers.Trainer): |
|
def __init__(self, *args, **kwargs): |
|
super().__init__(*args, **kwargs) |
|
|
|
def create_scheduler(self, num_training_steps: int, optimizer: torch.optim.Optimizer = None): |
|
|
|
|
|
num_train_epochs = self.args.num_train_epochs |
|
num_warmup_steps=self.args.get_warmup_steps(num_training_steps) |
|
num_firstepoch_steps = math.ceil(num_training_steps/num_train_epochs) |
|
num_warmup_acc = num_warmup_steps*self.args.gradient_accumulation_steps |
|
num_firstepoch_steps_acc = num_firstepoch_steps*self.args.gradient_accumulation_steps |
|
num_training_steps_acc = num_training_steps*self.args.gradient_accumulation_steps |
|
|
|
print (f"Warm-up steps aligned to Gradient accumulation ({self.args.gradient_accumulation_steps}) = {num_warmup_acc} actual warmup steps") |
|
if self.args.lr_scheduler_type == 'cosine': |
|
|
|
num_warmup_acc_min = min(num_warmup_acc, num_firstepoch_steps_acc) |
|
|
|
if num_warmup_acc>num_firstepoch_steps_acc: |
|
print(f"\033[1;31;1mWARNING: The number of warmup steps is set too high! It will be clamped to 1 epoch, essentially going from warmup to annealing.\033[0;37;0m") |
|
print (f"FP Scheduler Warmup: 0-[{num_warmup_acc_min}], Hold [{num_warmup_acc_min}]-{num_firstepoch_steps_acc}, Annealing {num_firstepoch_steps_acc}-{num_training_steps_acc}") |
|
else: |
|
print (f"FP Scheduler Warmup: 0-{num_warmup_acc_min}, Hold {num_warmup_acc_min}-{num_firstepoch_steps_acc}, Annealing {num_firstepoch_steps_acc}-{num_training_steps_acc}") |
|
|
|
self.lr_scheduler = custom_cosine_scheduler_with_warmup( |
|
optimizer=self.optimizer if optimizer is None else optimizer, |
|
num_warmup_steps=num_warmup_steps, |
|
num_training_steps=num_training_steps, |
|
num_firstepoch_steps = num_firstepoch_steps, |
|
) |
|
self._created_lr_scheduler = True |
|
return self.lr_scheduler |
|
elif self.args.lr_scheduler_type == 'constant': |
|
|
|
half_step_acc = num_training_steps_acc//2 |
|
num_warmup_acc_min = min(num_warmup_acc, half_step_acc) |
|
|
|
if num_warmup_acc>half_step_acc: |
|
print(f"\033[1;31;1mWARNING: The number of warmup steps is set too high! It will be clamped to half of all epochs, essentially going from warmup to annealing in the middle.\033[0;37;0m") |
|
print (f"FP Scheduler Warmup: 0-[{num_warmup_acc_min}], Hold [{num_warmup_acc_min}]-{half_step_acc}, Annealing {half_step_acc}-{num_training_steps_acc}") |
|
else: |
|
print (f"FP Scheduler Warmup: 0-{num_warmup_acc_min}, Hold {num_warmup_acc_min}-{half_step_acc}, Annealing {half_step_acc}-{num_training_steps_acc}") |
|
|
|
self.lr_scheduler = custom_half_scheduler_with_warmup( |
|
optimizer=self.optimizer if optimizer is None else optimizer, |
|
num_warmup_steps=num_warmup_steps, |
|
num_training_steps=num_training_steps, |
|
num_firstepoch_steps = num_firstepoch_steps, |
|
) |
|
self._created_lr_scheduler = True |
|
return self.lr_scheduler |
|
else: |
|
return super().create_scheduler(num_training_steps=num_training_steps, optimizer=optimizer) |