Spaces:
Runtime error
Runtime error
import streamlit as st | |
import re | |
import torch | |
from transformers import AlbertTokenizer, AlbertModel | |
import pytorch_lightning as pl | |
from huggingface_hub import hf_hub_download | |
def download_torch_model(): | |
model_path = hf_hub_download(repo_id="adrianmoses/hate-speech-detection", filename="pytorch_hs_model.net") | |
print(model_path) | |
return model_path | |
def load_model(): | |
model = AlbertModel.from_pretrained("albert-base-v2") | |
return model | |
def load_tokenizer(): | |
tokenizer = AlbertTokenizer.from_pretrained("albert-base-v2") | |
return tokenizer | |
def clean_tweet(tweet): | |
return re.sub(r'@\w+:?', "", tweet, flags=re.IGNORECASE) | |
def tokenize(tweet): | |
tweet = clean_tweet(tweet) | |
tokenizer = load_tokenizer() | |
return tokenizer(tweet, padding=True, truncation=True, max_length=64, return_tensors='pt') | |
class HateSpeechClassifier(pl.LightningModule): | |
def __init__(self, albert_model, dropout, hidden_dim, output_dim): | |
super().__init__() | |
self.model = albert_model | |
self.l1 = torch.nn.Linear(hidden_dim, hidden_dim) | |
self.dropout = torch.nn.Dropout(dropout) | |
self.l2 = torch.nn.Linear(hidden_dim, output_dim) | |
self.loss = torch.nn.NLLLoss() | |
def forward(self, input_ids, attention_mask, token_type_ids): | |
x = self.model(input_ids, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids)[0] | |
x = x[:, 0] | |
x = self.dropout(torch.relu(self.l1(x))) | |
return torch.log_softmax(self.l2(x), dim=1) | |
def training_step(self, batch, batch_idx): | |
input_ids, attention_masks, token_type_ids, y = batch | |
y_hat = self(input_ids, attention_masks, token_type_ids) | |
loss = self.loss(y_hat, y.view(-1)) | |
return loss | |
def validation_step(self, batch, batch_idx): | |
input_ids, attention_masks, token_type_ids, y = batch | |
y_hat = self(input_ids, attention_masks, token_type_ids) | |
loss = self.loss(y_hat, y.view(-1)) | |
return loss | |
def configure_optimizers(self): | |
return torch.optim.Adam(self.parameters(), lr=1e-5) | |
def setup_model(): | |
torch_model_path = download_torch_model() | |
albert_model = load_model() | |
model = HateSpeechClassifier(albert_model, 0.5, 768, 2) | |
model.load_state_dict(torch.load(torch_model_path, map_location=torch.device('cpu'))) | |
model.eval() | |
return model | |
model = setup_model() | |
st.title("Hate Speech Detection") | |
st.caption("Text will be truncated to 64 tokens") | |
text = st.text_input("Enter text") | |
encoded_input = tokenize(text) | |
device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
input_ids = encoded_input['input_ids'] | |
attention_mask = encoded_input['attention_mask'] | |
token_type_ids = encoded_input['token_type_ids'] | |
pred = model(input_ids, attention_mask, token_type_ids) | |
print(pred) | |
print(pred.data.max(1)) | |
label = pred.data.max(1)[1] | |
print(label) | |
is_hate_speech = "YES" if label == 1 else "NO" | |
st.write(f"Is this hate speech?: {is_hate_speech}") | |