File size: 11,549 Bytes
883eeae |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 |
import re
import gradio as gr
import json
import datetime
from email.utils import parseaddr
import pandas as pd
from datasets import load_dataset
from huggingface_hub import HfApi
from dabstep_benchmark.utils import format_log, format_error, format_warning, is_valid_https_url, evaluate
OWNER = "adyen"
HF_API = HfApi()
HF_LEADERBOARD = f"{OWNER}/DABstep"
HF_DATASET_PATH = f"{OWNER}/DABstep"
HF_INTERNAL_DATASET_PATH = f"{OWNER}/DABstep-internal"
HF_DATASET_CONFIGS = [
"tasks",
"submissions",
"task_scores"
]
DATASETS = {}
def refresh(only_leaderboard: bool = False):
if only_leaderboard:
for config_name in ["task_scores", "submissions"]:
DATASETS[f"{config_name}"] = load_dataset(
path=HF_DATASET_PATH,
name=config_name,
split="default",
)
print(f"Downloaded {HF_DATASET_PATH}/{config_name}")
else:
for config_name in HF_DATASET_CONFIGS:
DATASETS[f"{config_name}"] = load_dataset(
path=HF_DATASET_PATH,
name=config_name,
split="default",
)
print(f"Downloaded {HF_DATASET_PATH}/{config_name}")
DATASETS["internal_tasks"] = load_dataset(
path=HF_INTERNAL_DATASET_PATH,
name="tasks",
split="default",
)
print(f"Downloaded {HF_INTERNAL_DATASET_PATH}/tasks")
DATASETS["contact_info"] = load_dataset(
path=HF_INTERNAL_DATASET_PATH,
name="contact_info",
split="default",
)
print(f"Downloaded {HF_INTERNAL_DATASET_PATH}/contact_info")
return generate_leaderboard_df()
def validate_submission(submission_df: pd.DataFrame):
# mandatory_columns = ["agent_answer", "task_id", "num_steps"]
mandatory_columns = ["agent_answer", "task_id"]
expected_columns = [*mandatory_columns, "reasoning_trace"]
# Check for missing mandatory columns
missing_columns = [col for col in mandatory_columns if col not in submission_df.columns]
if missing_columns:
return format_error(f"Missing mandatory columns: {', '.join(missing_columns)}")
# Check for unexpected columns
unexpected_columns = [col for col in submission_df.columns if col not in expected_columns]
if unexpected_columns:
return format_error(f"Unexpected columns: {', '.join(unexpected_columns)}")
# Check for NaN values in any column
if submission_df.isnull().values.any():
return format_error("Submission contains NaN values. Please ensure no missing data.")
# Check if all columns are of string type
non_string_columns = [col for col in submission_df.columns if submission_df[col].dtype != 'object']
if non_string_columns:
return format_error(f"Columns with non-string data type: {', '.join(non_string_columns)}")
return None # No errors
def process_submission(
split: str,
agent_name: str,
model_family: str,
repo_url: str,
path_to_file: str,
organisation: str,
mail: str,
):
if agent_name == "":
return format_warning("Please provide an agent name")
if organisation == "":
return format_warning("Please provide an organisation")
if mail == "":
return format_warning("Please provide an email")
if model_family == "":
return format_warning("Please provide a model family")
allowed_pattern = re.compile(r'^[a-zA-Z0-9 _.-]+$')
if not allowed_pattern.match(agent_name):
return format_warning(
f"{agent_name=} can only contain alphanumeric characters, spaces, dashes (-), and underscores (_)")
if not allowed_pattern.match(organisation):
return format_warning(
f"{organisation=} can only contain alphanumeric characters, spaces, dashes (-), and underscores (_)")
# very basic email parsing
_, parsed_mail = parseaddr(mail)
if not "@" in parsed_mail:
return format_warning("Please provide a valid email address.")
if repo_url != "" and not is_valid_https_url(repo_url):
return format_warning("If you provide a URL it must be a valid one. You can also leave it empty")
# submission file validation
if path_to_file == None:
return format_warning("Please attach a file.")
submission_path = path_to_file.name
try:
submission_df = pd.read_json(submission_path, lines=True, dtype=str)
validation_error = validate_submission(submission_df)
if validation_error:
return validation_error
except Exception as exc:
return format_error(f"Submission file is incorrectly formatted. Please fix it and resubmit your file. {str(exc)}")
print(f"Processing submission_id={organisation}-{agent_name}...")
gr.Info(f"Processing submission of {agent_name}...")
refresh(only_leaderboard=False)
submissions_df = DATASETS["submissions"].to_pandas()
contact_info_df = DATASETS["contact_info"].to_pandas()
internal_tasks_df = DATASETS["internal_tasks"].to_pandas()
# check if this agent already was submitted
submission_id = f"{organisation}-{agent_name}"
if submission_id in submissions_df['submission_id'].values:
return format_warning(f"This {submission_id} pair has been already submitted.")
# process submission
submission_df["submission_id"] = submission_id
submission_df["agent_name"] = agent_name
submission_df["model_family"] = model_family
submission_df["organisation"] = organisation
submission_df["repo_url"] = repo_url
submission_df["date"] = datetime.date.today().strftime("%d-%m-%Y")
# add empty reasoning trace if one is not provided to not break schema of datasets
if "reasoning_trace" not in submission_df.columns:
submission_df["reasoning_trace"] = ""
# overwrite submission
submission_df.to_json(submission_path, orient="records", lines=True)
try:
task_scores = evaluate(
agent_answers=submission_df,
tasks_with_gt=internal_tasks_df,
submission_id=submission_id
)
except KeyError as exc:
return format_error(str(exc))
# save submitted file once evaluation has run correctly
filename_id = f"v1__{organisation}-{agent_name}__{datetime.datetime.today().strftime('%d-%m-%Y')}"
path_in_repo = f"data/submissions/{filename_id}.jsonl"
HF_API.upload_file(
repo_id=HF_DATASET_PATH,
path_or_fileobj=submission_path,
path_in_repo=path_in_repo,
repo_type="dataset",
)
print(f"[submission_id={organisation}-{agent_name}] Pushed submission to {HF_DATASET_PATH}/{path_in_repo} !")
# write scores to disk
with open(f"data/task_scores/{filename_id}.jsonl", "w") as f:
for score in task_scores:
f.write(json.dumps(score) + "\n")
# upload scores to hub dataset
path_in_repo = f"data/task_scores/{filename_id}.jsonl"
HF_API.upload_file(
repo_id=HF_DATASET_PATH,
path_or_fileobj=f"data/task_scores/{filename_id}.jsonl",
path_in_repo=path_in_repo,
repo_type="dataset",
)
print(f"[submission_id={organisation}-{agent_name}] Pushed task_scores to {HF_DATASET_PATH}/{path_in_repo} !")
# if we already have this email dont save its metadata
if mail not in contact_info_df["mail"].values:
contact_info = {
"submission_id": submission_id,
"agent_name": agent_name,
"model_family": model_family,
"repo_url": repo_url,
"organisation": organisation,
"mail": mail,
"date": datetime.date.today().strftime("%d-%m-%Y"),
}
contact_info_df = pd.concat([contact_info_df, pd.DataFrame([contact_info])], ignore_index=True)
contact_info_df.to_json("contact_info.jsonl", orient="records", lines=True)
HF_API.upload_file(
repo_id=HF_INTERNAL_DATASET_PATH,
path_or_fileobj="contact_info.jsonl",
path_in_repo="contact_info.jsonl",
repo_type="dataset",
)
print(f"[submission_id={organisation}-{agent_name}] Pushed contact_info to {HF_INTERNAL_DATASET_PATH}/contact_info.jsonl !")
return format_log(
f"""
Agent {agent_name} submitted by {organisation} successfully.
Please refresh the leaderboard to see your score displayed.
""")
def generate_leaderboard_df() -> pd.DataFrame:
task_scores_df = DATASETS["task_scores"].to_pandas()
submissions_df = DATASETS["submissions"].to_pandas()
# get metadata of each submssion_id
submissions_df = (
submissions_df.groupby("submission_id")
.first()
.reset_index()[
[
"submission_id",
"agent_name",
"model_family",
"organisation",
"repo_url",
"date"
]
]
)
# make num_steps a number
# task_scores_df["num_steps"] = pd.to_numeric(task_scores_df["num_steps"], errors="coerce")
# group scores per submission
leaderboard_df = (
task_scores_df.groupby(["submission_id", "level"])
.agg(
avg_score=("score", "mean"),
# avg_num_steps=("num_steps", "mean")
)
.reset_index()
)
# reshape
# leaderboard_df = leaderboard_df.pivot(index="submission_id", columns="level", values=["avg_score", "avg_num_steps"])
leaderboard_df = leaderboard_df.pivot(index="submission_id", columns="level", values=["avg_score"])
leaderboard_df.columns = [f"{metric}_lvl_{level}" for metric, level in leaderboard_df.columns]
leaderboard_df = leaderboard_df.reset_index()
# leaderboard_df["overall_avg_steps"] = (
# leaderboard_df.get("avg_num_steps_lvl_1", 0) +
# leaderboard_df.get("avg_num_steps_lvl_2", 0) +
# leaderboard_df.get("avg_num_steps_lvl_3", 0)
# )
# leaderboard_df["overall_avg_steps"] = leaderboard_df["overall_avg_steps"] / 3
# join scores and submission metadata
leaderboard_df = pd.merge(submissions_df, leaderboard_df, on="submission_id", how="inner")
# renaming
col_map = {
"agent_name": "Agent",
"avg_score_lvl_easy": "Easy Level Accuracy (%)",
"avg_score_lvl_hard": "Hard Level Accuracy (%)",
# "overall_avg_steps": "Overall Avg Reasoning Steps",
# "avg_num_steps_lvl_1": "Level 1 Avg Reasoning Steps",
# "avg_num_steps_lvl_2": "Level 2 Avg Reasoning Steps",
# "avg_num_steps_lvl_3": "Level 3 Avg Reasoning Steps",
"organisation": "Organization",
"repo_url": "Repo URL",
"model_family": "Model Family",
"date": "Date"
}
col_order = [new_col_name for new_col_name in col_map.values()]
leaderboard_df.rename(columns=col_map, inplace=True)
df = leaderboard_df[col_order].copy()
# formatting
# convert scores to %
df["Easy Level Accuracy (%)"] = df["Easy Level Accuracy (%)"].apply(lambda x: round(x * 100, 2))
df["Hard Level Accuracy (%)"] = df["Hard Level Accuracy (%)"].apply(lambda x: round(x * 100, 2))
# make repo url clickable in markdown
df["Repo URL"] = df["Repo URL"].apply(lambda x: f"[Link]({x})" if x != "" else x)
# make agent name bold
df["Agent"] = df["Agent"].apply(lambda x: f"**{x}**")
# sort-by best score
df.sort_values(by="Hard Level Accuracy (%)", ascending=False, inplace=True)
return df
|