Spaces:
Sleeping
Sleeping
"""LangGraph Agent""" | |
import os | |
from dotenv import load_dotenv | |
from langgraph.graph import START, StateGraph, MessagesState | |
from langgraph.prebuilt import tools_condition | |
from langgraph.prebuilt import ToolNode | |
from langchain_google_genai import ChatGoogleGenerativeAI | |
from langchain_groq import ChatGroq | |
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings | |
from langchain_community.tools.tavily_search import TavilySearchResults | |
from langchain_community.document_loaders import WikipediaLoader | |
from langchain_community.document_loaders import ArxivLoader | |
from langchain_community.vectorstores import SupabaseVectorStore | |
from langchain_core.messages import SystemMessage, HumanMessage, AIMessage | |
from langchain_core.tools import tool | |
from langchain.tools.retriever import create_retriever_tool | |
from supabase.client import Client, create_client | |
load_dotenv() | |
supabase_url = 'https://qzydfaroejcpolxfgfim.supabase.co' | |
supabase_key = 'eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJzdXBhYmFzZSIsInJlZiI6InF6eWRmYXJvZWpjcG9seGZnZmltIiwicm9sZSI6InNlcnZpY2Vfcm9sZSIsImlhdCI6MTc0OTUwNTQyMywiZXhwIjoyMDY1MDgxNDIzfQ.IBjtn1tPcogCF6DSf8dgR29aTsC61Qh0XueXYcEWG_Q' | |
def multiply(a: int, b: int) -> int: | |
"""Multiply two numbers.""" | |
return a * b | |
def add(a: int, b: int) -> int: | |
"""Add two numbers.""" | |
return a + b | |
def subtract(a: int, b: int) -> int: | |
"""Subtract two numbers.""" | |
return a - b | |
def divide(a: int, b: int) -> float: | |
"""Divide two numbers.""" | |
if b == 0: | |
raise ValueError("Cannot divide by zero.") | |
return a / b | |
def modulus(a: int, b: int) -> int: | |
"""Get the modulus of two numbers.""" | |
return a % b | |
def wiki_search(query: str) -> dict: | |
"""Search Wikipedia for a query and return maximum 2 results.""" | |
search_docs = WikipediaLoader(query=query, load_max_docs=2).load() | |
formatted_search_docs = "\n\n---\n\n".join( | |
[ | |
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>' | |
for doc in search_docs | |
] | |
) | |
return {"wiki_results": formatted_search_docs} | |
def web_search(query: str) -> dict: | |
"""Search Tavily for a query and return maximum 3 results.""" | |
search_docs = TavilySearchResults(max_results=3).invoke(query=query) | |
formatted_search_docs = "\n\n---\n\n".join( | |
[ | |
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>' | |
for doc in search_docs | |
] | |
) | |
return {"web_results": formatted_search_docs} | |
def arvix_search(query: str) -> dict: | |
"""Search Arxiv for a query and return maximum 3 results.""" | |
search_docs = ArxivLoader(query=query, load_max_docs=3).load() | |
formatted_search_docs = "\n\n---\n\n".join( | |
[ | |
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content[:1000]}\n</Document>' | |
for doc in search_docs | |
] | |
) | |
return {"arvix_results": formatted_search_docs} | |
# load the system prompt from the file | |
with open("system_prompt.txt", "r", encoding="utf-8") as f: | |
system_prompt = f.read() | |
# System message | |
sys_msg = SystemMessage(content=system_prompt) | |
# Build embeddings and vector store client | |
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2") # dim=768 | |
supabase: Client = create_client(supabase_url, supabase_key) | |
vector_store = SupabaseVectorStore( | |
client=supabase, | |
embedding=embeddings, | |
table_name="documents", | |
query_name="match_documents_langchain", | |
) | |
create_retriever_tool = create_retriever_tool( | |
retriever=vector_store.as_retriever(), | |
name="Question Search", | |
description="A tool to retrieve similar questions from a vector store.", | |
) | |
tools = [ | |
multiply, | |
add, | |
subtract, | |
divide, | |
modulus, | |
wiki_search, | |
web_search, | |
arvix_search, | |
] | |
# Build graph function | |
def build_graph(provider: str = "huggingface"): | |
"""Build the graph""" | |
if provider == "google": | |
llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0) | |
elif provider == "groq": | |
llm = ChatGroq(model="qwen-qwq-32b", temperature=0) | |
elif provider == "huggingface": | |
llm = ChatHuggingFace( | |
llm=HuggingFaceEndpoint(endpoint_url="https://api-inference.huggingface.co/models/Meta-DeepLearning/llama-2-7b-chat-hf"), | |
temperature=0, | |
) | |
else: | |
raise ValueError("Invalid provider. Choose 'google', 'groq' or 'huggingface'.") | |
llm_with_tools = llm.bind_tools(tools) | |
def assistant(state: MessagesState): | |
"""Assistant node""" | |
return {"messages": [llm_with_tools.invoke(state["messages"])]} | |
def retriever(state: MessagesState): | |
query = state["messages"][-1].content | |
query_embedding = embeddings.embed_query(query) # list of floats | |
response = supabase.rpc( | |
'match_documents_langchain', | |
{ | |
'match_count': 2, | |
'query_embedding': query_embedding | |
} | |
).execute() | |
docs = response.data | |
if not docs or len(docs) == 0: | |
answer = "Sorry, I couldn't find an answer to your question." | |
else: | |
content = docs[0]['content'] # get content of the first matched doc | |
if "Final answer :" in content: | |
answer = content.split("Final answer :")[-1].strip() | |
else: | |
answer = content.strip() | |
return {"messages": [AIMessage(content=answer)]} | |
builder = StateGraph(MessagesState) | |
builder.add_node("retriever", retriever) | |
# If you want to integrate assistant and tools, uncomment and add edges accordingly | |
# builder.add_node("assistant", assistant) | |
# builder.add_node("tools", ToolNode(tools)) | |
# builder.add_edge(START, "retriever") | |
# builder.add_edge("retriever", "assistant") | |
# builder.add_conditional_edges("assistant", tools_condition) | |
# builder.add_edge("tools", "assistant") | |
builder.set_entry_point("retriever") | |
builder.set_finish_point("retriever") | |
return builder.compile() | |