|
import os |
|
from threading import Thread |
|
from typing import Iterator |
|
|
|
import gradio as gr |
|
import spaces |
|
import torch |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer |
|
|
|
MAX_MAX_NEW_TOKENS = 2048 |
|
DEFAULT_MAX_NEW_TOKENS = 1024 |
|
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096")) |
|
|
|
description = """ |
|
<h1><center>LLM Finetuned on TaoScience<center></h1> |
|
<h3><center>TaoGPT is a fine-tuned LLM on Tao Science by Dr. Rulin Xu and Dr. Zhi Gang Sha. <br> Check out- <a href='https://github.com/agencyxr/taogpt7B'>Github Repo</a> For More Information. 💬<h3><center> |
|
|
|
""" |
|
|
|
NOMIC = """ |
|
<!DOCTYPE html> |
|
<html> |
|
<head> |
|
<title>TaoGPT - DataMap</title> |
|
<style> |
|
iframe { |
|
width: 100%; |
|
height: 600px; /* You can adjust the height as needed */ |
|
border: 0; |
|
} |
|
</style> |
|
</head> |
|
<body> |
|
<iframe |
|
src="https://atlas.nomic.ai/map/c1ce06f4-7ed0-4c02-88a4-dd3b47bdf878/f2941fb8-0f36-4a23-8cbe-40dbf76ca9e4?xs=-41.09135&xf=41.12038&ys=-22.50394&yf=23.67273" |
|
></iframe> |
|
</body> |
|
</html> |
|
""" |
|
|
|
if not torch.cuda.is_available(): |
|
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>" |
|
|
|
|
|
if torch.cuda.is_available(): |
|
model_id = "agency888/TaoGPT-v1" |
|
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, device_map="auto") |
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
tokenizer.use_default_system_prompt = False |
|
|
|
|
|
@spaces.GPU |
|
def generate( |
|
message: str, |
|
chat_history: list[tuple[str, str]], |
|
system_prompt: str, |
|
max_new_tokens: int = 1024, |
|
temperature: float = 0.6, |
|
top_p: float = 0.9, |
|
top_k: int = 50, |
|
repetition_penalty: float = 1.2, |
|
) -> Iterator[str]: |
|
conversation = [] |
|
if system_prompt: |
|
conversation.append({"role": "system", "content": system_prompt}) |
|
for user, assistant in chat_history: |
|
conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}]) |
|
conversation.append({"role": "user", "content": message}) |
|
|
|
input_ids = tokenizer.encode(f"<s>{system_prompt}{message}", return_tensors="pt") |
|
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH: |
|
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:] |
|
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.") |
|
input_ids = input_ids.to(model.device) |
|
|
|
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True) |
|
generate_kwargs = dict( |
|
{"input_ids": input_ids}, |
|
streamer=streamer, |
|
max_new_tokens=max_new_tokens, |
|
do_sample=True, |
|
top_p=top_p, |
|
top_k=top_k, |
|
temperature=temperature, |
|
num_beams=1, |
|
repetition_penalty=repetition_penalty, |
|
pad_token_id=2, |
|
eos_token_id=2, |
|
) |
|
t = Thread(target=model.generate, kwargs=generate_kwargs ) |
|
t.start() |
|
|
|
outputs = [] |
|
for text in streamer: |
|
outputs.append(text) |
|
yield "".join(outputs) |
|
|
|
|
|
chat_interface = gr.ChatInterface( |
|
fn=generate, |
|
additional_inputs=[ |
|
gr.Textbox(label="System prompt", lines=6), |
|
gr.Slider( |
|
label="Max new tokens", |
|
minimum=1, |
|
maximum=MAX_MAX_NEW_TOKENS, |
|
step=1, |
|
value=DEFAULT_MAX_NEW_TOKENS, |
|
), |
|
gr.Slider( |
|
label="Temperature", |
|
minimum=0.1, |
|
maximum=4.0, |
|
step=0.1, |
|
value=0.6, |
|
), |
|
gr.Slider( |
|
label="Top-p (nucleus sampling)", |
|
minimum=0.05, |
|
maximum=1.0, |
|
step=0.05, |
|
value=0.9, |
|
), |
|
gr.Slider( |
|
label="Top-k", |
|
minimum=1, |
|
maximum=1000, |
|
step=1, |
|
value=50, |
|
), |
|
gr.Slider( |
|
label="Repetition penalty", |
|
minimum=1.0, |
|
maximum=2.0, |
|
step=0.05, |
|
value=1.2, |
|
), |
|
], |
|
stop_btn=None, |
|
examples=[ |
|
["What is TaoScience ?"], |
|
["TaoScience was written by ?"], |
|
["Tell me more about TaoScience"]], |
|
) |
|
|
|
with gr.Blocks() as demo: |
|
gr.HTML(description) |
|
chat_interface.render() |
|
with gr.Column(): |
|
with gr.Accordion(label="Visualise Training Data" ,open=False): |
|
gr.HTML(NOMIC) |
|
gr.Markdown("The model is prone to Hallucination and many not always be Factual") |
|
|
|
if __name__ == "__main__": |
|
demo.queue(max_size=20).launch(share=True) |
|
|