chakkally commited on
Commit
6ab6d7d
·
verified ·
1 Parent(s): fce60a3

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +202 -203
app.py CHANGED
@@ -1,210 +1,209 @@
 
1
  import gradio as gr
2
- from datasets import load_dataset, Dataset
3
- from datetime import datetime
4
- from datetime import date
5
  import requests
6
- import tempfile
7
- import asyncio
8
- from huggingface_hub import upload_file
9
- from functools import partial
10
- import io
11
- import os
12
- from PIL import Image, ImageDraw, ImageFont
13
- from huggingface_hub import login
14
-
15
- login(token=os.environ["HUGGINGFACE_TOKEN"])
16
-
17
- # Constants
18
- SCORES_DATASET = "agents-course/unit4-students-scores"
19
- CERTIFICATES_DATASET = "agents-course/course-certificates-of-excellence"
20
- THRESHOLD_SCORE = 30
21
- CERTIFYING_ORG_LINKEDIN_ID = os.getenv("CERTIFYING_ORG_LINKEDIN_ID", "000000")
22
- COURSE_TITLE = os.getenv("COURSE_TITLE", "Hugging Face Agents Course")
23
-
24
- # Function to check user score
25
- def check_user_score(username):
26
- score_data = load_dataset(SCORES_DATASET, split="train", download_mode="force_redownload")
27
- matches = [row for row in score_data if row["username"] == username]
28
- return matches[0] if matches else None
29
-
30
- # Function to check if certificate entry exists
31
- def has_certificate_entry(username):
32
- cert_data = load_dataset(CERTIFICATES_DATASET, split="train", download_mode="force_redownload")
33
- print(username)
34
- return any(row["username"] == username for row in cert_data)
35
-
36
- # Function to add certificate entry
37
- def add_certificate_entry(username, name, score):
38
- # Load current dataset
39
- ds = load_dataset(CERTIFICATES_DATASET, split="train", download_mode="force_redownload")
40
-
41
- # Remove any existing entry with the same username
42
- filtered_rows = [row for row in ds if row["username"] != username]
43
-
44
- # Append the updated/new entry
45
- new_entry = {
46
- "username": username,
47
- "score": score,
48
- "timestamp": datetime.now().isoformat()
49
- }
50
- filtered_rows.append(new_entry)
51
-
52
- # Rebuild dataset and push
53
- updated_ds = Dataset.from_list(filtered_rows)
54
- updated_ds.push_to_hub(CERTIFICATES_DATASET)
55
-
56
- # Function to generate certificate PDF
57
- def generate_certificate(name, score):
58
- """Generate certificate image and PDF."""
59
- certificate_path = os.path.join(
60
- os.path.dirname(__file__), "templates", "certificate.png"
61
- )
62
- im = Image.open(certificate_path)
63
- d = ImageDraw.Draw(im)
64
-
65
- name_font = ImageFont.truetype("Quattrocento-Regular.ttf", 100)
66
- date_font = ImageFont.truetype("Quattrocento-Regular.ttf", 48)
67
-
68
- name = name.title()
69
- d.text((1000, 740), name, fill="black", anchor="mm", font=name_font)
70
-
71
- d.text((1480, 1170), str(date.today()), fill="black", anchor="mm", font=date_font)
72
-
73
- pdf = im.convert("RGB")
74
- pdf.save("certificate.pdf")
75
-
76
- return im, "certificate.pdf"
77
-
78
- async def upload_certificate_to_hub(username: str, certificate_img) -> str:
79
- """Upload certificate to the dataset hub and return the URL asynchronously."""
80
- # Save image to temporary file
81
- with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp:
82
- certificate_img.save(tmp.name)
83
-
 
 
 
 
 
 
84
  try:
85
- # Run upload in a thread pool since upload_file is blocking
86
- loop = asyncio.get_event_loop()
87
- upload_func = partial(
88
- upload_file,
89
- path_or_fileobj=tmp.name,
90
- path_in_repo=f"certificates/{username}/{date.today()}.png",
91
- repo_id="agents-course/final-certificates",
92
- repo_type="dataset",
93
- token=os.getenv("HF_TOKEN"),
94
- )
95
- await loop.run_in_executor(None, upload_func)
96
-
97
- # Construct the URL to the image
98
- cert_url = (
99
- f"https://huggingface.co/datasets/agents-course/final-certificates/"
100
- f"resolve/main/certificates/{username}/{date.today()}.png"
101
- )
102
-
103
- # Clean up temp file
104
- os.unlink(tmp.name)
105
- return cert_url
106
-
107
  except Exception as e:
108
- print(f"Error uploading certificate: {e}")
109
- os.unlink(tmp.name)
110
- return None
111
-
112
- def create_linkedin_button(username: str, cert_url: str | None) -> str:
113
- """Create LinkedIn 'Add to Profile' button HTML."""
114
- current_year = date.today().year
115
- current_month = date.today().month
116
-
117
- # Use the dataset certificate URL if available, otherwise fallback to default
118
- certificate_url = cert_url or "https://huggingface.co/agents-course-finishers"
119
-
120
- linkedin_params = {
121
- "startTask": "CERTIFICATION_NAME",
122
- "name": COURSE_TITLE,
123
- "organizationName": "Hugging Face",
124
- "organizationId": CERTIFYING_ORG_LINKEDIN_ID,
125
- "issueYear": str(current_year),
126
- "issueMonth": str(current_month),
127
- "certUrl": certificate_url,
128
- "certId": username, # Using username as cert ID
129
- }
130
-
131
- # Build the LinkedIn button URL
132
- base_url = "https://www.linkedin.com/profile/add?"
133
- params = "&".join(
134
- f"{k}={requests.utils.quote(v)}" for k, v in linkedin_params.items()
135
- )
136
- button_url = base_url + params
137
-
138
- message = f"""
139
- <a href="{button_url}" target="_blank" style="display: block; margin: 0 auto; width: fit-content;">
140
- <img src="https://download.linkedin.com/desktop/add2profile/buttons/en_US.png"
141
- alt="LinkedIn Add to Profile button"
142
- style="height: 40px; width: auto; display: block;" />
143
- </a>
144
- """
145
- return message
146
-
147
- # Main function to handle certificate generation
148
- async def handle_certificate(name, profile: gr.OAuthProfile):
149
- if profile is None:
150
- return "You must be logged in with your Hugging Face account.", None
151
-
152
- username = profile.username
153
- user_score = check_user_score(username)
154
-
155
- if not user_score:
156
- return "You need to complete Unit 4 first.", None, None, None
157
-
158
- score = user_score["score"]
159
-
160
- if score < THRESHOLD_SCORE:
161
- return f"Your score is {score}. You need at least {THRESHOLD_SCORE} to pass.", None, None
162
-
163
- certificate_image, certificate_pdf = generate_certificate(name, score)
164
- add_certificate_entry(username, name, score)
165
-
166
- # Start certificate upload asynchronously
167
- gr.Info("Uploading your certificate...")
168
- cert_url = await upload_certificate_to_hub(username, certificate_image)
169
-
170
- if cert_url is None:
171
- gr.Warning("Certificate upload failed, but you still passed!")
172
- cert_url = "https://huggingface.co/agents-course"
173
-
174
- linkedin_button = create_linkedin_button(username, cert_url)
175
- return "Congratulations! Here's your certificate:", certificate_image, gr.update(value=linkedin_button, visible=True), certificate_pdf
176
-
177
-
178
- # Gradio interface
179
  with gr.Blocks() as demo:
180
- gr.Markdown("# 🎓 Agents Course - Get Your Final Certificate")
181
- gr.Markdown("Welcome! Follow the steps below to receive your official certificate:")
182
- gr.Markdown("⚠️ **Note**: Due to high demand, you might experience occasional bugs. If something doesn't work, please try again after a moment!")
183
-
184
- with gr.Group():
185
- gr.Markdown("## How it works")
186
- gr.Markdown("""
187
- 1. **Sign in** with your Hugging Face account using the button below.
188
- 2. **Enter your full name** (this will appear on the certificate).
189
- 3. Click **'Get My Certificate'** to check your score and download your certificate.
190
- """)
191
- gr.Markdown("---")
192
- gr.Markdown("📝 **Note**: You must have completed [Unit 4](https://huggingface.co/learn/agents-course/unit4/introduction) and your Agent must have scored **above 30** to get your certificate.")
193
-
 
 
 
 
 
 
 
 
194
  gr.LoginButton()
195
- with gr.Row():
196
- name_input = gr.Text(label="Enter your name (this will appear on the certificate)")
197
- generate_btn = gr.Button("Get my certificate")
198
- output_text = gr.Textbox(label="Result")
199
- linkedin_btn = gr.HTML(visible=False)
200
-
201
- cert_image = gr.Image(label="Your Certificate")
202
- cert_file = gr.File(label="Download Certificate (PDF)", file_types=[".pdf"])
203
-
204
- generate_btn.click(
205
- fn=handle_certificate,
206
- inputs=[name_input],
207
- outputs=[output_text, cert_image, linkedin_btn, cert_file]
208
  )
209
-
210
- demo.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
  import gradio as gr
 
 
 
3
  import requests
4
+ import inspect
5
+ import pandas as pd
6
+ from smolagents import CodeAgent, DuckDuckGoSearchTool, OpenAIServerModel, PythonInterpreterTool, WikipediaSearchTool, FinalAnswerTool
7
+
8
+ # (Keep Constants as is)
9
+ # --- Constants ---
10
+ DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
11
+
12
+ # --- Basic Agent Definition ---
13
+ # ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
14
+ class BasicAgent:
15
+ def __init__(self, api_key: str = None):
16
+ if not api_key:
17
+ print("Did not receive API key.")
18
+ else:
19
+ print(f"First 5 characters of the provided API key: {api_key[:5]}")
20
+ os.environ["OPENAI_API_KEY"] = api_key
21
+ print("BasicAgent initialized.")
22
+ def __call__(self, question: str) -> str:
23
+ print(f"Agent received question (first 50 chars): {question[:50]}...")
24
+ agent = CodeAgent(tools=[DuckDuckGoSearchTool(),PythonInterpreterTool(),WikipediaSearchTool(),FinalAnswerTool()],model=OpenAIServerModel(model_id="gpt-4o"))
25
+ answer=agent.run(question)
26
+ return answer
27
+
28
+ def run_and_submit_all(api_key: str, profile: gr.OAuthProfile | None = None):
29
+ """
30
+ Fetches all questions, runs the BasicAgent on them, submits all answers,
31
+ and displays the results.
32
+ """
33
+ # --- Determine HF Space Runtime URL and Repo URL ---
34
+ space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
35
+
36
+ if profile:
37
+ username= f"{profile.username}"
38
+ print(f"User logged in: {username}")
39
+ else:
40
+ print("User not logged in.")
41
+ return "Please Login to Hugging Face with the button.", None
42
+
43
+ api_url = DEFAULT_API_URL
44
+ questions_url = f"{api_url}/questions"
45
+ submit_url = f"{api_url}/submit"
46
+
47
+ # 1. Instantiate Agent ( modify this part to create your agent)
48
+ try:
49
+ agent = BasicAgent(api_key=api_key)
50
+ except Exception as e:
51
+ print(f"Error instantiating agent: {e}")
52
+ return f"Error initializing agent: {e}", None
53
+ # In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
54
+ agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
55
+ print(agent_code)
56
+
57
+ # 2. Fetch Questions
58
+ print(f"Fetching questions from: {questions_url}")
59
+ try:
60
+ response = requests.get(questions_url, timeout=15)
61
+ response.raise_for_status()
62
+ questions_data = response.json()
63
+ if not questions_data:
64
+ print("Fetched questions list is empty.")
65
+ return "Fetched questions list is empty or invalid format.", None
66
+ print(f"Fetched {len(questions_data)} questions.")
67
+ except requests.exceptions.RequestException as e:
68
+ print(f"Error fetching questions: {e}")
69
+ return f"Error fetching questions: {e}", None
70
+ except requests.exceptions.JSONDecodeError as e:
71
+ print(f"Error decoding JSON response from questions endpoint: {e}")
72
+ print(f"Response text: {response.text[:500]}")
73
+ return f"Error decoding server response for questions: {e}", None
74
+ except Exception as e:
75
+ print(f"An unexpected error occurred fetching questions: {e}")
76
+ return f"An unexpected error occurred fetching questions: {e}", None
77
+
78
+ # 3. Run your Agent
79
+ results_log = []
80
+ answers_payload = []
81
+ print(f"Running agent on {len(questions_data)} questions...")
82
+ for item in questions_data:
83
+ task_id = item.get("task_id")
84
+ question_text = item.get("question")
85
+ if not task_id or question_text is None:
86
+ print(f"Skipping item with missing task_id or question: {item}")
87
+ continue
88
  try:
89
+ submitted_answer = agent(question_text)
90
+ answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
91
+ results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
92
  except Exception as e:
93
+ print(f"Error running agent on task {task_id}: {e}")
94
+ results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
95
+
96
+ if not answers_payload:
97
+ print("Agent did not produce any answers to submit.")
98
+ return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
99
+
100
+ # 4. Prepare Submission
101
+ submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
102
+ status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
103
+ print(status_update)
104
+
105
+ # 5. Submit
106
+ print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
107
+ try:
108
+ response = requests.post(submit_url, json=submission_data, timeout=60)
109
+ response.raise_for_status()
110
+ result_data = response.json()
111
+ final_status = (
112
+ f"Submission Successful!\n"
113
+ f"User: {result_data.get('username')}\n"
114
+ f"Overall Score: {result_data.get('score', 'N/A')}% "
115
+ f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
116
+ f"Message: {result_data.get('message', 'No message received.')}"
117
+ )
118
+ print("Submission successful.")
119
+ results_df = pd.DataFrame(results_log)
120
+ return final_status, results_df
121
+ except requests.exceptions.HTTPError as e:
122
+ error_detail = f"Server responded with status {e.response.status_code}."
123
+ try:
124
+ error_json = e.response.json()
125
+ error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
126
+ except requests.exceptions.JSONDecodeError:
127
+ error_detail += f" Response: {e.response.text[:500]}"
128
+ status_message = f"Submission Failed: {error_detail}"
129
+ print(status_message)
130
+ results_df = pd.DataFrame(results_log)
131
+ return status_message, results_df
132
+ except requests.exceptions.Timeout:
133
+ status_message = "Submission Failed: The request timed out."
134
+ print(status_message)
135
+ results_df = pd.DataFrame(results_log)
136
+ return status_message, results_df
137
+ except requests.exceptions.RequestException as e:
138
+ status_message = f"Submission Failed: Network error - {e}"
139
+ print(status_message)
140
+ results_df = pd.DataFrame(results_log)
141
+ return status_message, results_df
142
+ except Exception as e:
143
+ status_message = f"An unexpected error occurred during submission: {e}"
144
+ print(status_message)
145
+ results_df = pd.DataFrame(results_log)
146
+ return status_message, results_df
147
+
148
+
149
+ # --- Build Gradio Interface using Blocks ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
150
  with gr.Blocks() as demo:
151
+ gr.Markdown("# Basic Agent Evaluation Runner")
152
+ gr.Markdown(
153
+ """
154
+ **Instructions:**
155
+
156
+ 1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
157
+ 2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
158
+ 3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
159
+
160
+ ---
161
+ **Disclaimers:**
162
+ Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
163
+ This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
164
+ """
165
+ )
166
+
167
+ # Add API Key input field
168
+ api_key_input = gr.Textbox(
169
+ label="API Key",
170
+ placeholder="Enter your OpenAI API key here (sk-...)",
171
+ type="password"
172
+ )
173
  gr.LoginButton()
174
+
175
+ run_button = gr.Button("Run Evaluation & Submit All Answers")
176
+
177
+ status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
178
+ # Removed max_rows=10 from DataFrame constructor
179
+ results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
180
+
181
+ run_button.click(
182
+ fn=run_and_submit_all,
183
+ inputs=[api_key_input],
184
+ outputs=[status_output, results_table]
 
 
185
  )
186
+
187
+ if __name__ == "__main__":
188
+ print("\n" + "-"*30 + " App Starting " + "-"*30)
189
+ # Check for SPACE_HOST and SPACE_ID at startup for information
190
+ space_host_startup = os.getenv("SPACE_HOST")
191
+ space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
192
+
193
+ if space_host_startup:
194
+ print(f"✅ SPACE_HOST found: {space_host_startup}")
195
+ print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
196
+ else:
197
+ print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
198
+
199
+ if space_id_startup: # Print repo URLs if SPACE_ID is found
200
+ print(f"✅ SPACE_ID found: {space_id_startup}")
201
+ print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
202
+ print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
203
+ else:
204
+ print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
205
+
206
+ print("-"*(60 + len(" App Starting ")) + "\n")
207
+
208
+ print("Launching Gradio Interface for Basic Agent Evaluation...")
209
+ demo.launch(debug=True, share=False)