import os from typing import List, Optional from pydantic import BaseModel, Field import gradio as gr from datasets import load_dataset from huggingface_hub import InferenceClient import black # Initialize the inference client HF_TOKEN = os.getenv("HF_TOKEN") HF_API_URL = os.getenv("HF_API_URL", "Qwen/Qwen2.5-Coder-32B-Instruct") client = InferenceClient(model=HF_API_URL, token=HF_TOKEN) # Load questions from Hugging Face dataset EXAM_MAX_QUESTIONS = int(os.getenv("EXAM_MAX_QUESTIONS", 1)) EXAM_DATASET_ID = "agents-course/smolagents-quiz-data" # prep the dataset for the quiz ds = load_dataset(EXAM_DATASET_ID, split="train", download_mode="force_redownload") quiz_data = list(ds) if EXAM_MAX_QUESTIONS: quiz_data = quiz_data[:EXAM_MAX_QUESTIONS] # Check if dataset has image feature HAS_IMAGE_FEATURE = "image" in ds.features class CriterionFeedback(BaseModel): """Feedback for a single assessment criterion""" criterion: str = Field(..., description="The assessment criterion being evaluated") met: bool = Field(..., description="Whether the criterion was met") explanation: str = Field( ..., description="Detailed explanation of how well the criterion was met" ) improvement_tips: Optional[str] = Field( None, description="Specific tips for improvement if needed" ) class CodeFeedback(BaseModel): """Structured feedback for code submission""" overall_feedback: str = Field( ..., description="Overall assessment of the code solution" ) criteria_feedback: List[CriterionFeedback] = Field( ..., description="Detailed feedback for each assessment criterion" ) def format_python_code(code: str) -> str: """Format Python code using black.""" try: return black.format_str(code, mode=black.Mode()) except Exception as e: gr.Warning(f"Code formatting failed: {str(e)}") return code EVALUATION_TEMPLATE = """Evaluate this Python code solution: Challenge: {challenge} Reference Solution: ```python {solution} ``` Student's Solution: ```python {student_code} ``` Assessment Criteria: {criteria} Approach: Be highly tollerent of differences in approach, as long as they meet Assessment Criteria. Provide detailed feedback on how well each criterion was met.""" def check_code( user_code: str, solution: str, challenge: str, assessment_criteria: List[str] ) -> dict: """ Use LLM to evaluate the user's code solution and provide structured feedback. """ # Format both user code and solution formatted_user_code = format_python_code(user_code) formatted_solution = format_python_code(solution) # Format criteria as bullet points criteria_text = "\n".join(f"- {c}" for c in assessment_criteria) # Fill the template prompt = EVALUATION_TEMPLATE.format( challenge=challenge, solution=formatted_solution, student_code=formatted_user_code, criteria=criteria_text, ) try: # Get structured feedback using response_format with schema from Pydantic model response = client.text_generation( prompt=prompt, grammar={ "type": "json_object", "value": CodeFeedback.model_json_schema(), }, ) # Parse response into Pydantic model feedback = CodeFeedback.model_validate_json(response) # Format the feedback for display formatted_feedback = [ f"### Overall Assessment\n{feedback.overall_feedback}\n\n" ] for cf in feedback.criteria_feedback: tip = cf.improvement_tips or "" tip_text = f"\nšŸ’” Tip: {tip}" if tip else "" formatted_feedback.append( f"### {cf.criterion}\n" f"{'āœ…' if cf.met else 'āŒ'} {cf.explanation}" f"{tip_text}\n" ) return {"feedback": "\n".join(formatted_feedback)} except Exception as e: gr.Warning(f"Error generating feedback: {str(e)}") return {"feedback": "Unable to generate detailed feedback due to an error."} def on_user_logged_in(token: gr.OAuthToken | None): """ Handle user login state. On a valid token, hide the login button and reveal the Start button while keeping Next hidden. Also, clear the question text, code input, status, and image. """ if token is not None: return ( gr.update(visible=False), # login_btn hidden gr.update(visible=True), # start_btn shown gr.update(visible=False), # next_btn hidden "", # Clear question_text gr.update(value="", visible=False), # Clear code_input "", # Clear status_text gr.update(value="", visible=False), # Clear question_image ) else: return ( gr.update(visible=True), # login_btn visible gr.update(visible=False), # start_btn hidden gr.update(visible=False), # next_btn hidden "", gr.update(value="", visible=False), "", gr.update(value="", visible=False), ) def handle_quiz(question_idx, user_answers, submitted_code, is_start): """Handle quiz state and progression""" if is_start: question_idx = 0 else: # If not the first question and there's a submission, store it if question_idx < len(quiz_data) and submitted_code.strip(): current_q = quiz_data[question_idx] # Format the submitted code before checking formatted_code = format_python_code(submitted_code) feedback_dict = check_code( formatted_code, current_q["solution"], current_q["challenge"], current_q["assessment_criteria"], ) user_answers.append( { "challenge": current_q["challenge"], "submitted_code": formatted_code, "correct_solution": current_q["solution"], "assessment_criteria": current_q["assessment_criteria"], "feedback": feedback_dict["feedback"], } ) question_idx += 1 # If we've reached the end, show final results if question_idx >= len(quiz_data): results_text = """## Code Review Complete! šŸ“š This feedback should help you improve your skills. ā›”ļø The feedback uses Qwen/Qwen2.5-Coder-32B-Instruct to compare your response to a gold standard solution. As we know, LLMs are not perfect. You should compare your work against the assessment criteria if you doubt the feedback. Here's your detailed feedback:""" for idx, answer in enumerate(user_answers): # Format assessment criteria as bullet points criteria_bullets = "\n".join( f"- {c}" for c in answer["assessment_criteria"] ) # Build the results text piece by piece results_text += ( f"### Question {idx + 1}: {answer['challenge']}\n\n" "#### Your Solution:\n```python\n" f"{answer['submitted_code']}\n```\n\n" "#### Reference Solution:\n```python\n" f"{answer['correct_solution']}\n```\n\n" "#### Assessment Criteria:\n" f"{criteria_bullets}\n\n" "#### Feedback:\n" f"{answer['feedback']}\n\n" "---\n\n" ) return ( "", # question_text cleared gr.update(value="", visible=False), # hide code_input "Review your feedback below to improve your coding skills!", question_idx, # updated question index user_answers, # accumulated answers gr.update(visible=False), # start_btn hidden gr.update(visible=False), # next_btn hidden gr.update(value=results_text, visible=True), # final_markdown gr.update(visible=False), # question_image hidden ) else: # Show the next question q = quiz_data[question_idx] # Format assessment criteria as bullet points criteria_bullets = "\n".join(f"- {c}" for c in q["assessment_criteria"]) challenge_text = ( f"## Question {question_idx + 1}\n\n" f"### Challenge:\n{q['challenge']}\n\n" "### Assessment Criteria:\n" f"{criteria_bullets}" ) # Only show image if the feature exists and question has an image show_image = HAS_IMAGE_FEATURE and q.get("image") is not None image_update = gr.update( value=q.get("image") if show_image else None, visible=show_image ) return ( challenge_text, # question_text gr.update(value=q["placeholder"], visible=True), # code_input "Submit your solution and click 'Next' to continue.", question_idx, # updated question_idx user_answers, # user_answers gr.update(visible=False), # start_btn hidden gr.update(visible=True), # next_btn visible gr.update(visible=False), # final_markdown hidden image_update, # question_image ) with gr.Blocks() as demo: demo.title = f"Coding Quiz: {EXAM_DATASET_ID}" # State variables question_idx = gr.State(value=0) user_answers = gr.State(value=[]) with gr.Row(variant="compact"): intro_text = """ ## Welcome to the smolagents code reviewer This application will review your smolagents code, and provide feedback on your solutions. This exercise is not reviewed or certified! It's about trying out smolagents for the first time. ā„¹ļø Log in first, then click 'Start' to begin. Complete each coding challenge and click 'Next' to proceed. You'll get feedback on your solutions at the end.""" intro_text = gr.Markdown(intro_text) with gr.Row(variant="panel"): with gr.Column(): question_text = gr.Markdown("") question_image = gr.Image( label="Question Image", visible=True if HAS_IMAGE_FEATURE else False, type="pil", ) # Add image component with gr.Column(): code_input = gr.Code( language="python", label="Your Solution", visible=False ) with gr.Row(variant="compact"): status_text = gr.Markdown("") with gr.Row(variant="compact"): login_btn = gr.LoginButton() start_btn = gr.Button("Start") next_btn = gr.Button("Next ā­ļø", visible=False) with gr.Row(variant="compact"): final_markdown = gr.Markdown("", visible=False) login_btn.click( fn=on_user_logged_in, inputs=None, outputs=[ login_btn, start_btn, next_btn, question_text, code_input, status_text, question_image, ], ) start_btn.click( fn=handle_quiz, inputs=[question_idx, user_answers, code_input, gr.State(True)], outputs=[ question_text, # Markdown with question text code_input, # Code input field status_text, # Status text (instructions/status messages) question_idx, # Updated question index (state) user_answers, # Updated user answers (state) start_btn, # Update for start button (will be hidden) next_btn, # Update for next button (shown for in-progress quiz) final_markdown, # Final results markdown (hidden until quiz ends) question_image, # Image update for the quiz question ], ) next_btn.click( fn=handle_quiz, inputs=[question_idx, user_answers, code_input, gr.State(False)], outputs=[ question_text, code_input, status_text, question_idx, user_answers, start_btn, next_btn, final_markdown, question_image, ], ) if __name__ == "__main__": demo.launch()