File size: 33,693 Bytes
a392ebe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": 16,
   "metadata": {},
   "outputs": [],
   "source": [
    "from langchain_pinecone import PineconeVectorStore\n",
    "from langchain_google_genai import GoogleGenerativeAIEmbeddings\n",
    "from langchain_google_genai import ChatGoogleGenerativeAI\n",
    "from langchain.chains import RetrievalQA\n",
    "from langchain.document_loaders import PyPDFLoader\n",
    "from langchain.text_splitter import RecursiveCharacterTextSplitter\n",
    "from langchain_openai import OpenAIEmbeddings\n",
    "# from sentence_transformers import SentenceTransformer\n",
    "from langchain_google_genai import GoogleGenerativeAIEmbeddings\n",
    "\n",
    "from langchain_google_genai import ChatGoogleGenerativeAI\n",
    "from langchain_pinecone import PineconeVectorStore\n",
    "from langchain.chains.question_answering import load_qa_chain\n",
    "from langchain import PromptTemplate\n",
    "from uuid import uuid4\n",
    "from langchain_core.documents import Document\n",
    "import getpass\n",
    "import os\n",
    "import google.generativeai as genai\n",
    "from langchain.document_loaders import PyPDFLoader"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Importing the documents needs to be loaded in Vector Database\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [],
   "source": [
    "base_dir = os.getcwd()\n",
    "file_name = \"Reliance.pdf\"\n",
    "file_path = os.path.join(base_dir,file_name )\n",
    "\n",
    "def create_chunks(doc_to_chunk):\n",
    "    text_splitter = RecursiveCharacterTextSplitter(\n",
    "        chunk_size=500,\n",
    "        chunk_overlap=100,\n",
    "        length_function=len\n",
    "    )\n",
    "    return text_splitter.split_documents(doc_to_chunk)\n",
    "\n",
    "def load_pdf(path):\n",
    "    loader = PyPDFLoader(path)\n",
    "    return loader.load()\n",
    "\n",
    "def load_chunk_file(path):\n",
    "    doc = load_pdf(path)\n",
    "    return create_chunks(doc)\n",
    "\n",
    "chunks = load_chunk_file(file_path)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Loading the document into Vector Database"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "['0c2ac5d0-8ee3-4b7e-8846-2918154f1eb8',\n",
       " 'aa5fc10a-7127-4f21-889f-28f4416f476b',\n",
       " '1642ce19-52a7-47ba-b9f5-571427234765',\n",
       " 'ab61277d-6c32-4c2b-9f16-462e1d91920b',\n",
       " 'df66c977-49f0-4f0c-b15d-399bae4cd22f',\n",
       " '2a7a3525-6032-4c9d-8841-8ae7ebf56850',\n",
       " 'b43a8564-a85b-4119-b58d-575e45a42165',\n",
       " '30ab4aba-7d2c-47b4-834c-59bc92f9ed74',\n",
       " '623f618b-a7f2-4095-b115-8b410ea9eb9e',\n",
       " 'c2ea7159-4de7-448e-aa69-1e9accff1850',\n",
       " '5869be42-c13a-4370-bc3b-2007d09cb7bc',\n",
       " 'e00749b7-b2a5-42f1-a16e-d6ed85849c91',\n",
       " '3673b32b-14b0-479d-8791-12f22bd90ff8',\n",
       " '919227ed-2b17-4b9c-a7d8-1de38c14d626',\n",
       " 'e9af81a2-0753-4788-993d-b59cc2cada2c',\n",
       " '872a0391-ad12-4eb5-baa5-fe6fe8ee659b',\n",
       " '744cf651-e62d-4739-9531-a0dc8e4f1f07',\n",
       " '645c60da-b40a-453a-b18f-4c06d314e221',\n",
       " 'b4f052a5-475c-43ab-8252-b28793ccd5c4',\n",
       " 'c40aea8d-d4a2-4af4-9054-97613d23e4a0',\n",
       " 'ea57becd-f898-47bb-9ca5-9fe15cb20454',\n",
       " 'd6b72ea5-eb18-47c0-8662-d4d211dfd10b',\n",
       " '83cea095-1704-46b1-85bd-79888fdf7d86',\n",
       " '189bdbb1-a31a-4e66-b5e8-59b1b4655398',\n",
       " 'a34b2aed-81a9-4326-9ccb-1e3fcf3873a9',\n",
       " '00180119-f5cf-41de-84b7-610b701383bf',\n",
       " '53f9ecc4-679c-47f8-9627-f2f886ef42de',\n",
       " 'be45dc55-d9ff-470c-9393-6cf96dc73c32',\n",
       " '63d75c0b-020e-4f72-9cae-3f2e4e82b228',\n",
       " 'c59b133d-c867-45be-963b-cb8f5df49802',\n",
       " 'bdf3cd50-4d60-4395-95a4-cde7a5e32f81',\n",
       " '29de5ec1-9910-45bd-8e1e-df565254ef73',\n",
       " '92a57d8c-84d2-4c73-9b40-682ed42e3998',\n",
       " '9954113f-64d7-4077-9097-1a64f2e6f096',\n",
       " 'eced5907-1ec7-45c2-9f1f-036c4fb78d6c',\n",
       " '2405c386-79f3-4337-8c40-db8b84bfedc2',\n",
       " '144fde6f-710b-4e1b-ac2f-6f3af969375a',\n",
       " '4929fd1e-f559-479b-974e-250a2bf2ac56',\n",
       " 'a4671288-21f3-4210-adcc-82daba519c62',\n",
       " '33219ac4-e102-4fdd-b453-8d911b6a0814',\n",
       " '4945640d-595c-46b8-87dc-87182501d9bf',\n",
       " '0f85529e-11e6-4120-b50c-7054b817d3aa',\n",
       " 'af1e1941-2904-40f5-aabe-ae1f7901bc5a',\n",
       " '3cca1def-8a18-4267-b04d-23fceab5faed',\n",
       " '9a53a228-f505-46db-95cd-dba9f40663bf',\n",
       " '0a5d4944-1a01-40f4-b557-330ed2e8a18a',\n",
       " 'cd161a04-1ce2-406d-a43b-ea7efea0370c',\n",
       " '4eddd6ce-b482-4466-9465-cda8c7c67d29',\n",
       " '584a0ea1-20cd-46cb-b127-970449862997',\n",
       " '4edbba63-e967-4864-be57-c1e195128021',\n",
       " 'ed281465-721c-470a-8ae7-21cfcb8af944',\n",
       " '143f581d-b09b-4afc-8d9c-eadb1c98e7bb',\n",
       " 'ec300ec2-5e3a-49fb-a109-00ff9386fd51',\n",
       " 'b233a907-d9b6-4d42-94cc-19013ca2ee22',\n",
       " '96f478ba-d59c-4cec-b69b-f8153819c64b',\n",
       " 'dee19024-32c4-437c-814f-65435855bc7d',\n",
       " '35efa2fe-bfec-41b0-af06-c1421b618dfb',\n",
       " 'a7f09dd4-0808-431f-9962-7781cec5d768',\n",
       " '7dd9eb93-154f-49af-97cf-3acb30fe39f1',\n",
       " 'ffb9ef79-92e3-4c24-b70d-717f9bb486ab',\n",
       " 'd4d0fc60-eece-4cde-aebd-2d2eacb1a175',\n",
       " '89a3c27b-332f-4598-b662-88460ebfea84',\n",
       " '8b853629-e6a8-482c-9d6a-8100c8e11be1',\n",
       " 'a16cbe9e-78a5-4998-9022-43941f5651ef',\n",
       " '43198ea2-2cb6-41f9-968e-71aef1aa3092',\n",
       " '201e741d-a2da-4f1c-bc0e-413cc264e15f',\n",
       " '122b9da9-d278-4858-859f-a343d989c755',\n",
       " 'e62610e0-fce8-484a-bb3f-c0acba538a20',\n",
       " 'e33ce6e0-fa91-4ea2-895a-c5dfc57dda15',\n",
       " '2feabd6a-0a10-4567-a00d-a175165795b7',\n",
       " 'e2f71af2-c2f9-4949-825b-e9da02d33f56',\n",
       " '51959195-4c81-4b4b-a928-91ae25c32cb7',\n",
       " '40cbbbaa-0241-4ec7-8672-d9b4eec0b5e3',\n",
       " 'e06501b9-6e70-4b46-a206-2d1bdbf8323a',\n",
       " '09624885-5fd8-46e8-a984-5415088a2652',\n",
       " 'ef2e77e7-a139-4d15-9415-c010cc348a58',\n",
       " 'e0fde1e5-907b-4fd4-b7b4-76996ad804af',\n",
       " '66658ffb-4311-4de6-8391-c58aa0539449',\n",
       " '84bd7262-d5df-4b18-ae3f-0d16cfc9a305',\n",
       " 'b6a1b8ca-d1b8-43ff-b58c-c3bd051cd6d1',\n",
       " '4800b8ed-2d70-4251-a6b2-f3423c6179a0',\n",
       " 'aecb53ac-b605-408f-896f-1969586ec320',\n",
       " '6e67366e-95da-4cae-8efa-59f8a72de036',\n",
       " '2b15f99a-f5db-4501-ada1-13b5e3608e7a',\n",
       " 'cccc222d-79b9-48e0-b1ec-204e98eb57e3',\n",
       " 'f56aeeb8-f883-4bf8-b7ba-5d7fa5c210cb',\n",
       " '2aaa5c36-d138-48b3-bc79-5462a0b1d9f0',\n",
       " '9bc822df-5102-4600-becc-344ac58ff8f1',\n",
       " '485a6eeb-f603-4d68-88e5-17cb88385eee',\n",
       " '9e3b0eb4-067c-4895-97e6-a4940e30c6e5',\n",
       " 'd9ec6744-d756-4c70-8b22-a5d0ea1bc7f9',\n",
       " '8dac6d17-163a-4186-bf2e-13c8a9d2c68b',\n",
       " '6afeca7a-019f-44ed-99bc-4faaec6cea9d',\n",
       " 'f22359e9-7fb8-465e-90da-9c31b2bc7044',\n",
       " '10aefd98-f3cd-4a30-8153-ce4be52baa2e',\n",
       " '444d3318-4b08-45f7-8706-26493b2ddd52',\n",
       " '8247b43f-1ceb-45c3-95fa-96e33ce3f0ae',\n",
       " '1dbd882d-fe93-4e43-b101-a2170b560645',\n",
       " '661945bd-82da-4221-bd8c-189b28b8dd3c',\n",
       " '0b406988-2b45-4c48-bfab-b6174b46cdbc',\n",
       " 'fbd11f62-3d13-409b-9faa-887a305d6024',\n",
       " '3d618eb3-d955-41eb-b0e8-e653b4955e4b',\n",
       " 'b8ef62cf-2182-43cd-8035-d49efe89fc53',\n",
       " '34b81bfe-4a05-40d2-b97f-1e760a4f9470',\n",
       " '24e1dc11-8d7e-49ce-a68e-29424199f219',\n",
       " '24ee8198-f1be-462c-a62b-bf50daa46456',\n",
       " 'c7c11b34-7df2-477f-86ac-33499992c4c3',\n",
       " 'bae84011-8d52-4eea-ade4-7e55fd9b6834',\n",
       " '733a2c66-5857-4d0a-96fa-c14682d6ebfe',\n",
       " '5ee5902e-e091-4295-b101-cf1550a474c0',\n",
       " '417946bf-4757-499a-b6c9-1ff5c80e137f',\n",
       " '4f7eeca1-5cab-42f8-a5cc-d42646c05692',\n",
       " '1fcbfff3-c90a-403f-8253-9646b874fdae',\n",
       " 'dde8af51-308b-44cc-923f-a0f14c7fc82c',\n",
       " 'bd1410b3-a00d-40ae-99c1-232838ec2ca3',\n",
       " '63f4b459-156c-4a26-97a5-f34f098b0b6a',\n",
       " 'c3b75842-5879-4ff8-904d-045fe7918db6',\n",
       " 'acdda0ae-50d7-4e6b-afda-7442052af76e',\n",
       " 'de80e5c5-2dea-463b-85b5-2a43389b103b',\n",
       " '0a1f41f7-b34c-47ad-9e11-1d01aad61f06',\n",
       " '592a5b78-2901-4343-96c0-ed1cd08c218a',\n",
       " '26e3415c-5919-4734-9236-018d5ae772e2']"
      ]
     },
     "execution_count": 3,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# Import the necessary modules\n",
    "from langchain_pinecone import PineconeVectorStore\n",
    "from langchain_core.documents import Document\n",
    "from langchain_google_genai import GoogleGenerativeAIEmbeddings\n",
    "from dotenv import load_dotenv\n",
    "import os\n",
    "from pinecone import Pinecone, ServerlessSpec\n",
    "load_dotenv()\n",
    "\n",
    "# Initialize the Pinecone vector store\n",
    "index_name = \"test-index\"\n",
    "pc = Pinecone(\n",
    "        api_key=os.environ[\"PINECONE_API_KEY\"]) \n",
    "if index_name not in pc.list_indexes().names():\n",
    "        pc.create_index(\n",
    "            name=index_name,\n",
    "            dimension=768,\n",
    "            metric='cosine',  \n",
    "            spec=ServerlessSpec(\n",
    "                cloud='aws',  # Specify your preferred cloud provider\n",
    "                region='us-east-1'  # Specify your preferred region\n",
    "            )\n",
    "        )\n",
    "\n",
    "embeddings = GoogleGenerativeAIEmbeddings(model=\"models/embedding-001\", google_api_key=os.environ[\"GOOGLE_API_KEY\"])\n",
    "vectorstore = PineconeVectorStore(index_name=index_name, embedding=embeddings)\n",
    "uuids = [str(uuid4()) for _ in range(len(chunks))]\n",
    "vectorstore.add_documents(documents=chunks, ids=uuids)\n",
    "\n",
    "\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Create questions for the performance evaluation of RAG"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {},
   "outputs": [
    {
     "ename": "ModuleNotFoundError",
     "evalue": "No module named 'llama_index.embeddings.gemini'",
     "output_type": "error",
     "traceback": [
      "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
      "\u001b[1;31mModuleNotFoundError\u001b[0m                       Traceback (most recent call last)",
      "Cell \u001b[1;32mIn[8], line 2\u001b[0m\n\u001b[0;32m      1\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mllama_index\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mllms\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mgemini\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m Gemini\n\u001b[1;32m----> 2\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mllama_index\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01membeddings\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mgemini\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m GeminiEmbeddings\n",
      "\u001b[1;31mModuleNotFoundError\u001b[0m: No module named 'llama_index.embeddings.gemini'"
     ]
    }
   ],
   "source": [
    "from llama_index.llms.gemini import Gemini\n",
    "from llama_index.embeddings.gemini import GeminiEmbeddings\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 28,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Unexpected exception formatting exception. Falling back to standard exception\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Traceback (most recent call last):\n",
      "  File \"C:\\Users\\agshi\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\IPython\\core\\interactiveshell.py\", line 3508, in run_code\n",
      "    exec(code_obj, self.user_global_ns, self.user_ns)\n",
      "  File \"C:\\Users\\agshi\\AppData\\Local\\Temp\\ipykernel_38684\\3905429830.py\", line 3, in <module>\n",
      "    resp = Gemini(Model = \"gemini-1.5-flash\").complete(\"Write a poem about a magic backpack\")\n",
      "           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
      "  File \"C:\\Users\\agshi\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\llama_index\\llms\\gemini\\base.py\", line 147, in __init__\n",
      "    model_meta = genai.get_model(model)\n",
      "                 ^^^^^^^^^^^^^^^^^^^^^^\n",
      "  File \"C:\\Users\\agshi\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\google\\generativeai\\models.py\", line 55, in get_model\n",
      "    elif name.startswith(\"tunedModels/\"):\n",
      "           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
      "  File \"C:\\Users\\agshi\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\google\\generativeai\\types\\model_types.py\", line 357, in make_model_name\n",
      "TypeError: Invalid input type. Expected one of the following types: `str`, `Model`, or `TunedModel`.\n",
      "\n",
      "During handling of the above exception, another exception occurred:\n",
      "\n",
      "Traceback (most recent call last):\n",
      "  File \"C:\\Users\\agshi\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\IPython\\core\\interactiveshell.py\", line 2105, in showtraceback\n",
      "    stb = self.InteractiveTB.structured_traceback(\n",
      "          ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
      "  File \"C:\\Users\\agshi\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\IPython\\core\\ultratb.py\", line 1396, in structured_traceback\n",
      "    return FormattedTB.structured_traceback(\n",
      "           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
      "  File \"C:\\Users\\agshi\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\IPython\\core\\ultratb.py\", line 1287, in structured_traceback\n",
      "    return VerboseTB.structured_traceback(\n",
      "           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
      "  File \"C:\\Users\\agshi\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\IPython\\core\\ultratb.py\", line 1140, in structured_traceback\n",
      "    formatted_exception = self.format_exception_as_a_whole(etype, evalue, etb, number_of_lines_of_context,\n",
      "                          ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
      "  File \"C:\\Users\\agshi\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\IPython\\core\\ultratb.py\", line 1055, in format_exception_as_a_whole\n",
      "    frames.append(self.format_record(record))\n",
      "                  ^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
      "  File \"C:\\Users\\agshi\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\IPython\\core\\ultratb.py\", line 955, in format_record\n",
      "    frame_info.lines, Colors, self.has_colors, lvals\n",
      "    ^^^^^^^^^^^^^^^^\n",
      "  File \"C:\\Users\\agshi\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\IPython\\core\\ultratb.py\", line 778, in lines\n",
      "    return self._sd.lines\n",
      "           ^^^^^^^^^^^^^^\n",
      "  File \"C:\\Users\\agshi\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\stack_data\\utils.py\", line 145, in cached_property_wrapper\n",
      "    value = obj.__dict__[self.func.__name__] = self.func(obj)\n",
      "                                               ^^^^^^^^^^^^^^\n",
      "  File \"C:\\Users\\agshi\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\stack_data\\core.py\", line 734, in lines\n",
      "    pieces = self.included_pieces\n",
      "             ^^^^^^^^^^^^^^^^^^^^\n",
      "  File \"C:\\Users\\agshi\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\stack_data\\utils.py\", line 145, in cached_property_wrapper\n",
      "    value = obj.__dict__[self.func.__name__] = self.func(obj)\n",
      "                                               ^^^^^^^^^^^^^^\n",
      "  File \"C:\\Users\\agshi\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\stack_data\\core.py\", line 681, in included_pieces\n",
      "    pos = scope_pieces.index(self.executing_piece)\n",
      "                             ^^^^^^^^^^^^^^^^^^^^\n",
      "  File \"C:\\Users\\agshi\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\stack_data\\utils.py\", line 145, in cached_property_wrapper\n",
      "    value = obj.__dict__[self.func.__name__] = self.func(obj)\n",
      "                                               ^^^^^^^^^^^^^^\n",
      "  File \"C:\\Users\\agshi\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\stack_data\\core.py\", line 660, in executing_piece\n",
      "    return only(\n",
      "           ^^^^^\n",
      "  File \"C:\\Users\\agshi\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\executing\\executing.py\", line 116, in only\n",
      "    raise NotOneValueFound('Expected one value, found 0')\n",
      "executing.executing.NotOneValueFound: Expected one value, found 0\n"
     ]
    }
   ],
   "source": [
    "from dotenv import load_dotenv\n",
    "load_dotenv()\n",
    "resp = Gemini(Model = \"gemini-1.5-flash\").complete(\"Write a poem about a magic backpack\")\n",
    "print(resp)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 20,
   "metadata": {},
   "outputs": [],
   "source": [
    "GOOGLE_API_KEY = os.environ[\"GOOGLE_API_KEY\"]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [],
   "source": [
    "questions = [\n",
    "    \"What is the company's registered office address?\",\n",
    "    \"What is the phone number of the company?\",\n",
    "    \"When was the company established?\",\n",
    "    \"Who is the regulatory authority for the company?\",\n",
    "    \"What is the website of the company?\",\n",
    "    \"What is the CIN (Corporate Identification Number) of the company?\",\n",
    "    \"Who is the CEO of the company?\",\n",
    "    \"What is the company's market capitalization?\",\n",
    "    \"What are the major products or services offered by the company?\",\n",
    "    \"What is the company's financial performance in the last fiscal year?\"\n",
    "]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "βœ… In Context Relevance, input source will be set to __record__.main_input or `Select.RecordInput` .\n",
      "βœ… In Context Relevance, input statement will be set to __record__.app.query.rets.source_nodes[:].node.text .\n",
      "βœ… In Answer Relevance, input prompt will be set to __record__.main_input or `Select.RecordInput` .\n",
      "βœ… In Answer Relevance, input context will be set to __record__.main_output or `Select.RecordOutput` .\n",
      "βœ… In Context Relevance, input prompt will be set to __record__.main_input or `Select.RecordInput` .\n",
      "βœ… In Context Relevance, input context will be set to __record__.app.query.rets.source_nodes[:].node.text .\n"
     ]
    }
   ],
   "source": [
    "from trulens_eval.feedback.provider.langchain import Langchain\n",
    "from trulens_eval.feedback.provider.hugs import Huggingface\n",
    "from trulens_eval import Feedback\n",
    "from trulens_eval import TruLlama\n",
    "context_selection = TruLlama.select_source_nodes().node.text\n",
    "provider = Huggingface()\n",
    "import numpy as np\n",
    "huggingface_provider = Huggingface()\n",
    "# Define a groundedness feedback function\n",
    "f_groundedness = (\n",
    "    Feedback(huggingface_provider.groundedness_measure_with_nli,\n",
    "             name=\"Context Relevance\")\n",
    "    .on_input()\n",
    "    .on(context_selection)\n",
    "    .aggregate(np.mean)\n",
    ")\n",
    "# Question/answer relevance between overall question and answer.\n",
    "f_answer_relevance = Feedback(\n",
    "    huggingface_provider.context_relevance,\n",
    "    name=\"Answer Relevance\"\n",
    ").on_input_output()\n",
    "\n",
    "# Context relevance between question and each context chunk.\n",
    "f_context_relevance = (\n",
    "    Feedback(huggingface_provider.context_relevance,\n",
    "             name=\"Context Relevance\")\n",
    "    .on_input()\n",
    "    .on(context_selection)\n",
    "    .aggregate(np.mean)\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "metadata": {},
   "outputs": [],
   "source": [
    "from trulens_eval.feedback.provider.hugs import Huggingface\n",
    "huggingface_provider = Huggingface()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "metadata": {},
   "outputs": [],
   "source": [
    "def generate_answer(query, vector_store, template):\n",
    "    # Use LangChain's RetrievalQA to query the vector store and generate the answer\n",
    "    qa_chain = RetrievalQA.from_chain_type(\n",
    "        llm=ChatGoogleGenerativeAI(model=\"gemini-1.5-flash\"),\n",
    "        chain_type=\"stuff\",\n",
    "        retriever=vector_store.as_retriever(search_type=\"similarity\")\n",
    "    )\n",
    "\n",
    "    # Format the prompt with the retrieved context and the query\n",
    "    prompt = template.format(context=\"{context}\", question=query)\n",
    "    \n",
    "    # Generate the answer by running the chain with the combined prompt\n",
    "    answer = qa_chain.run(query=query)  # Pass 'input' as keyword argument with the formatted prompt\n",
    "    return answer"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "generate_answer(\n",
    "    \"How do you create your AI portfolio?\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 15,
   "metadata": {},
   "outputs": [
    {
     "ename": "ValidationError",
     "evalue": "2 validation errors for TruLlama\napp.is-instance[BaseQueryEngine]\n  Input should be an instance of BaseQueryEngine [type=is_instance_of, input_value=<function generate_answer at 0x0000019D4B98EFC0>, input_type=function]\n    For further information visit https://errors.pydantic.dev/2.8/v/is_instance_of\napp.is-instance[BaseChatEngine]\n  Input should be an instance of BaseChatEngine [type=is_instance_of, input_value=<function generate_answer at 0x0000019D4B98EFC0>, input_type=function]\n    For further information visit https://errors.pydantic.dev/2.8/v/is_instance_of",
     "output_type": "error",
     "traceback": [
      "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
      "\u001b[1;31mValidationError\u001b[0m                           Traceback (most recent call last)",
      "Cell \u001b[1;32mIn[15], line 3\u001b[0m\n\u001b[0;32m      1\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mtrulens_eval\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m TruLlama\n\u001b[0;32m      2\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mtrulens_eval\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m FeedbackMode\n\u001b[1;32m----> 3\u001b[0m tru_recorder \u001b[38;5;241m=\u001b[39m \u001b[43mTruLlama\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m      4\u001b[0m \u001b[43m    \u001b[49m\u001b[43mgenerate_answer\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m      5\u001b[0m \u001b[43m    \u001b[49m\u001b[43mapp_id\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mApp_1\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[0;32m      6\u001b[0m \u001b[43m    \u001b[49m\u001b[43mfeedbacks\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m[\u001b[49m\n\u001b[0;32m      7\u001b[0m \u001b[43m        \u001b[49m\u001b[43mf_groundedness\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m      8\u001b[0m \u001b[43m        \u001b[49m\u001b[43mf_answer_relevance\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m      9\u001b[0m \u001b[43m        \u001b[49m\u001b[43mf_context_relevance\u001b[49m\n\u001b[0;32m     10\u001b[0m \u001b[43m    \u001b[49m\u001b[43m]\u001b[49m\n\u001b[0;32m     11\u001b[0m \u001b[43m)\u001b[49m\n",
      "File \u001b[1;32m~\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\trulens_eval\\tru_llama.py:314\u001b[0m, in \u001b[0;36mTruLlama.__init__\u001b[1;34m(self, app, **kwargs)\u001b[0m\n\u001b[0;32m    311\u001b[0m kwargs[\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mroot_class\u001b[39m\u001b[38;5;124m'\u001b[39m] \u001b[38;5;241m=\u001b[39m Class\u001b[38;5;241m.\u001b[39mof_object(app)  \u001b[38;5;66;03m# TODO: make class property\u001b[39;00m\n\u001b[0;32m    312\u001b[0m kwargs[\u001b[38;5;124m'\u001b[39m\u001b[38;5;124minstrument\u001b[39m\u001b[38;5;124m'\u001b[39m] \u001b[38;5;241m=\u001b[39m LlamaInstrument(app\u001b[38;5;241m=\u001b[39m\u001b[38;5;28mself\u001b[39m)\n\u001b[1;32m--> 314\u001b[0m \u001b[38;5;28;43msuper\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[38;5;21;43m__init__\u001b[39;49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n",
      "File \u001b[1;32m~\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\trulens_eval\\app.py:564\u001b[0m, in \u001b[0;36mApp.__init__\u001b[1;34m(self, tru, feedbacks, **kwargs)\u001b[0m\n\u001b[0;32m    559\u001b[0m kwargs[\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mfeedbacks\u001b[39m\u001b[38;5;124m'\u001b[39m] \u001b[38;5;241m=\u001b[39m feedbacks\n\u001b[0;32m    560\u001b[0m kwargs[\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mrecording_contexts\u001b[39m\u001b[38;5;124m'\u001b[39m] \u001b[38;5;241m=\u001b[39m contextvars\u001b[38;5;241m.\u001b[39mContextVar(\n\u001b[0;32m    561\u001b[0m     \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mrecording_contexts\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m    562\u001b[0m )\n\u001b[1;32m--> 564\u001b[0m \u001b[38;5;28;43msuper\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[38;5;21;43m__init__\u001b[39;49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m    566\u001b[0m app \u001b[38;5;241m=\u001b[39m kwargs[\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mapp\u001b[39m\u001b[38;5;124m'\u001b[39m]\n\u001b[0;32m    567\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mapp \u001b[38;5;241m=\u001b[39m app\n",
      "File \u001b[1;32m~\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\trulens_eval\\schema\\app.py:97\u001b[0m, in \u001b[0;36mAppDefinition.__init__\u001b[1;34m(self, app_id, tags, metadata, feedback_mode, app_extra_json, **kwargs)\u001b[0m\n\u001b[0;32m     94\u001b[0m kwargs[\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mmetadata\u001b[39m\u001b[38;5;124m'\u001b[39m] \u001b[38;5;241m=\u001b[39m {}\n\u001b[0;32m     95\u001b[0m kwargs[\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mapp_extra_json\u001b[39m\u001b[38;5;124m'\u001b[39m] \u001b[38;5;241m=\u001b[39m app_extra_json \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;28mdict\u001b[39m()\n\u001b[1;32m---> 97\u001b[0m \u001b[38;5;28;43msuper\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[38;5;21;43m__init__\u001b[39;49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m     99\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m app_id \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[0;32m    100\u001b[0m     app_id \u001b[38;5;241m=\u001b[39m obj_id_of_obj(obj\u001b[38;5;241m=\u001b[39m\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mmodel_dump(), prefix\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mapp\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n",
      "File \u001b[1;32m~\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\trulens_eval\\utils\\pyschema.py:686\u001b[0m, in \u001b[0;36mWithClassInfo.__init__\u001b[1;34m(self, class_info, obj, cls, *args, **kwargs)\u001b[0m\n\u001b[0;32m    682\u001b[0m     class_info \u001b[38;5;241m=\u001b[39m Class\u001b[38;5;241m.\u001b[39mof_class(\u001b[38;5;28mcls\u001b[39m, with_bases\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mTrue\u001b[39;00m)\n\u001b[0;32m    684\u001b[0m kwargs[CLASS_INFO] \u001b[38;5;241m=\u001b[39m class_info\n\u001b[1;32m--> 686\u001b[0m \u001b[38;5;28;43msuper\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[38;5;21;43m__init__\u001b[39;49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n",
      "File \u001b[1;32m~\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\pydantic\\main.py:193\u001b[0m, in \u001b[0;36mBaseModel.__init__\u001b[1;34m(self, **data)\u001b[0m\n\u001b[0;32m    191\u001b[0m \u001b[38;5;66;03m# `__tracebackhide__` tells pytest and some other tools to omit this function from tracebacks\u001b[39;00m\n\u001b[0;32m    192\u001b[0m __tracebackhide__ \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mTrue\u001b[39;00m\n\u001b[1;32m--> 193\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m__pydantic_validator__\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mvalidate_python\u001b[49m\u001b[43m(\u001b[49m\u001b[43mdata\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mself_instance\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m)\u001b[49m\n",
      "\u001b[1;31mValidationError\u001b[0m: 2 validation errors for TruLlama\napp.is-instance[BaseQueryEngine]\n  Input should be an instance of BaseQueryEngine [type=is_instance_of, input_value=<function generate_answer at 0x0000019D4B98EFC0>, input_type=function]\n    For further information visit https://errors.pydantic.dev/2.8/v/is_instance_of\napp.is-instance[BaseChatEngine]\n  Input should be an instance of BaseChatEngine [type=is_instance_of, input_value=<function generate_answer at 0x0000019D4B98EFC0>, input_type=function]\n    For further information visit https://errors.pydantic.dev/2.8/v/is_instance_of"
     ]
    }
   ],
   "source": [
    "from trulens_eval import TruLlama\n",
    "from trulens_eval import FeedbackMode\n",
    "tru_recorder = TruLlama(\n",
    "    generate_answer,\n",
    "    app_id=\"App_1\",\n",
    "    feedbacks=[\n",
    "        f_groundedness,\n",
    "        f_answer_relevance,\n",
    "        f_context_relevance\n",
    "    ]\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.9"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}