Upload 3 files
Browse files
task6_model_deployment/scripts/query_engine.py
CHANGED
@@ -1,105 +1,143 @@
|
|
1 |
-
import os
|
2 |
-
import yaml
|
3 |
-
from dotenv import load_dotenv
|
4 |
-
from pinecone import Pinecone
|
5 |
-
from llama_index.vector_stores.pinecone import PineconeVectorStore
|
6 |
-
from llama_index.core import VectorStoreIndex
|
7 |
-
from llama_index.core.response.pprint_utils import pprint_source_node
|
8 |
-
from llama_index.core import Settings
|
9 |
-
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
|
10 |
-
from llama_index.llms.groq import Groq
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
index
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
#
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import yaml
|
3 |
+
from dotenv import load_dotenv
|
4 |
+
from pinecone import Pinecone
|
5 |
+
from llama_index.vector_stores.pinecone import PineconeVectorStore
|
6 |
+
from llama_index.core import VectorStoreIndex
|
7 |
+
from llama_index.core.response.pprint_utils import pprint_source_node
|
8 |
+
from llama_index.core import Settings
|
9 |
+
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
|
10 |
+
from llama_index.llms.groq import Groq
|
11 |
+
from llama_index.core.tools import QueryEngineTool
|
12 |
+
from llama_index.core.query_engine import RouterQueryEngine
|
13 |
+
from llama_index.core.selectors import LLMSingleSelector, LLMMultiSelector
|
14 |
+
from llama_index.core.selectors import (
|
15 |
+
PydanticMultiSelector,
|
16 |
+
PydanticSingleSelector,
|
17 |
+
)
|
18 |
+
from llama_index.core import PromptTemplate
|
19 |
+
from llama_index.core.response_synthesizers import TreeSummarize
|
20 |
+
import nest_asyncio
|
21 |
+
import asyncio
|
22 |
+
nest_asyncio.apply()
|
23 |
+
# Load environment variables from the .env file
|
24 |
+
load_dotenv()
|
25 |
+
|
26 |
+
# Function to load YAML configuration
|
27 |
+
def load_config(config_path):
|
28 |
+
with open(config_path, 'r') as file:
|
29 |
+
config = yaml.safe_load(file)
|
30 |
+
return config
|
31 |
+
def load_prompt_template(prompt_template_path):
|
32 |
+
with open(prompt_template_path, 'r') as file:
|
33 |
+
prompt_template = yaml.safe_load(file)
|
34 |
+
return prompt_template
|
35 |
+
# Pinecone Index Connection
|
36 |
+
def index_connection(config_path):
|
37 |
+
"""
|
38 |
+
Initializes the Pinecone client and retrieves the index using the provided YAML configuration.
|
39 |
+
|
40 |
+
Args:
|
41 |
+
config_path (str): Path to the YAML configuration file.
|
42 |
+
|
43 |
+
Returns:
|
44 |
+
index: The initialized Pinecone index.
|
45 |
+
"""
|
46 |
+
# Load the configuration from a YAML file
|
47 |
+
config = load_config(config_path)
|
48 |
+
embed_model_name = config['embeddings']['model_name']
|
49 |
+
embed_model = HuggingFaceEmbedding(model_name=embed_model_name)
|
50 |
+
model_name = config['model']['model_name']
|
51 |
+
Settings.llm = Groq(model=model_name, api_key=os.getenv('GROQ_API_KEY'))
|
52 |
+
Settings.embed_model = embed_model
|
53 |
+
# Initialize the Pinecone client
|
54 |
+
pc = Pinecone(
|
55 |
+
api_key=os.getenv('PINECONE_API_KEY') # Get the Pinecone API key from the environment
|
56 |
+
)
|
57 |
+
index_name = config['pinecone']['index_name']
|
58 |
+
summary_index_name = config['pinecone']['summary_index_name']
|
59 |
+
index = pc.Index(index_name)
|
60 |
+
summary_index = pc.Index(summary_index_name) # Get the Pinecone index using the index name from the config
|
61 |
+
return index,summary_index
|
62 |
+
|
63 |
+
# Initialize Pinecone Vector Store and Retriever
|
64 |
+
def initialize_retriever(pinecone_index,summary_index):
|
65 |
+
"""
|
66 |
+
Initializes the Pinecone vector store and sets up the retriever.
|
67 |
+
|
68 |
+
Args:
|
69 |
+
pinecone_index: The Pinecone index object.
|
70 |
+
|
71 |
+
Returns:
|
72 |
+
retriever: The initialized retriever for querying the vector store.
|
73 |
+
"""
|
74 |
+
|
75 |
+
# Initialize Pinecone Vector Store
|
76 |
+
vector_store = PineconeVectorStore(pinecone_index=pinecone_index, text_key="_node_content")
|
77 |
+
summary_vector_store = PineconeVectorStore(pinecone_index=summary_index, text_key="_node_content")
|
78 |
+
# Create the retriever using the VectorStoreIndex and configure similarity_top_k
|
79 |
+
index = VectorStoreIndex.from_vector_store(vector_store=vector_store)
|
80 |
+
summary_index = VectorStoreIndex.from_vector_store(vector_store=summary_vector_store)
|
81 |
+
return index,summary_index
|
82 |
+
|
83 |
+
# Query the Pinecone Index
|
84 |
+
def index_retrieval(index, summary_index, query_text):
|
85 |
+
"""
|
86 |
+
Queries the Pinecone index using the provided retriever and query text.
|
87 |
+
|
88 |
+
Args:
|
89 |
+
retriever: The initialized retriever.
|
90 |
+
query_text (str): The text query to search for.
|
91 |
+
|
92 |
+
Returns:
|
93 |
+
str: Query result from the Pinecone index.
|
94 |
+
"""
|
95 |
+
script_dir = os.path.dirname(os.path.abspath(__file__)) # Get the current script directory
|
96 |
+
base_dir = os.path.dirname(script_dir)
|
97 |
+
prompt_template_path = os.path.join(base_dir, 'model', 'prompt_template.yaml')
|
98 |
+
prompt_template = load_prompt_template(prompt_template_path)
|
99 |
+
QA_PROMPT = PromptTemplate(prompt_template['QA_PROMPT_TMPL'])
|
100 |
+
# Execute the query using the retriever
|
101 |
+
vector_query_engine = index.as_query_engine(text_qa_template=QA_PROMPT)
|
102 |
+
summary_query_engine = summary_index.as_query_engine(text_qa_template=QA_PROMPT)
|
103 |
+
|
104 |
+
vector_tool = QueryEngineTool.from_defaults(
|
105 |
+
query_engine=vector_query_engine,
|
106 |
+
description="Useful for answering questions about this context",
|
107 |
+
)
|
108 |
+
|
109 |
+
summary_tool = QueryEngineTool.from_defaults(
|
110 |
+
query_engine=summary_query_engine,
|
111 |
+
description="Useful for answering questions about this context",
|
112 |
+
)
|
113 |
+
|
114 |
+
tree_summarize = TreeSummarize(
|
115 |
+
summary_template=PromptTemplate(prompt_template['TREE_SUMMARIZE_PROMPT_TMPL'])
|
116 |
+
)
|
117 |
+
query_engine = RouterQueryEngine(
|
118 |
+
selector=LLMMultiSelector.from_defaults(),
|
119 |
+
query_engine_tools=[
|
120 |
+
vector_tool,
|
121 |
+
summary_tool,
|
122 |
+
],
|
123 |
+
summarizer=tree_summarize,)
|
124 |
+
response = query_engine.query(query_text)
|
125 |
+
return response
|
126 |
+
# Example usage
|
127 |
+
if __name__ == "__main__":
|
128 |
+
# Dynamically determine the path to the config file
|
129 |
+
script_dir = os.path.dirname(os.path.abspath(__file__)) # Get the current script directory
|
130 |
+
base_dir = os.path.dirname(script_dir) # Go one level up
|
131 |
+
config_path = os.path.join(base_dir, 'configs', 'config.yaml') # Path to 'config.yaml' in the 'configs' directory
|
132 |
+
|
133 |
+
# Step 1: Initialize Pinecone Connection
|
134 |
+
pinecone_index,summary_index = index_connection(config_path=config_path)
|
135 |
+
|
136 |
+
# Step 2: Initialize the Retriever
|
137 |
+
retriever,summary_retriever = initialize_retriever(pinecone_index,summary_index)
|
138 |
+
|
139 |
+
# Step 3: Query the Pinecone index
|
140 |
+
query_text = """How much can the Minister of Health pay out of the Consolidated Revenue Fund in relation to coronavirus disease 2019 (COVID-19) tests"""
|
141 |
+
response = index_retrieval(retriever, summary_retriever, query_text)
|
142 |
+
print(response)
|
143 |
+
# Print the result (already printed by pprint_source_node)
|
task6_model_deployment/scripts/vector_database_creation.py
CHANGED
@@ -1,50 +1,76 @@
|
|
1 |
-
import yaml
|
2 |
-
import os
|
3 |
-
import os
|
4 |
-
from pinecone import Pinecone, ServerlessSpec
|
5 |
-
from dotenv import load_dotenv
|
6 |
-
|
7 |
-
load_dotenv()
|
8 |
-
script_dir = os.path.dirname(os.path.abspath(__file__))
|
9 |
-
|
10 |
-
# Construct the base directory (one level up from the script directory)
|
11 |
-
base_dir = os.path.dirname(script_dir)
|
12 |
-
|
13 |
-
# Construct the path to the config file
|
14 |
-
config_path = os.path.join(base_dir, 'configs', 'config.yaml')
|
15 |
-
|
16 |
-
def load_config(file_path):
|
17 |
-
with open(file_path, 'r') as file:
|
18 |
-
config = yaml.safe_load(file)
|
19 |
-
return config
|
20 |
-
|
21 |
-
def creation_of_vector_database():
|
22 |
-
# Load the configuration from a YAML file
|
23 |
-
config = load_config(config_path)
|
24 |
-
|
25 |
-
# Initialize the Pinecone client
|
26 |
-
pc = Pinecone(
|
27 |
-
api_key=os.getenv('PINECONE_API_KEY')) # Ensure your API key is set in the environment variables
|
28 |
-
|
29 |
-
# Connect to the Pinecone index
|
30 |
-
index_name = config['pinecone']['index_name']
|
31 |
-
dimension = config['pinecone']['dimension']
|
32 |
-
metric = config['pinecone']['metric']
|
33 |
-
# file_path = config['file_location']['file_path']
|
34 |
-
cloud = config['pinecone']['cloud']
|
35 |
-
region = config['pinecone']['region']
|
36 |
-
|
37 |
-
if index_name not in pc.list_indexes().names():
|
38 |
-
pc.create_index(
|
39 |
-
name=index_name,
|
40 |
-
dimension=dimension,
|
41 |
-
metric=metric,
|
42 |
-
spec=ServerlessSpec(
|
43 |
-
cloud=cloud, # Specify your preferred cloud provider
|
44 |
-
region=region # Specify your preferred region
|
45 |
-
)
|
46 |
-
)
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import yaml
|
2 |
+
import os
|
3 |
+
import os
|
4 |
+
from pinecone import Pinecone, ServerlessSpec
|
5 |
+
from dotenv import load_dotenv
|
6 |
+
|
7 |
+
load_dotenv()
|
8 |
+
script_dir = os.path.dirname(os.path.abspath(__file__))
|
9 |
+
|
10 |
+
# Construct the base directory (one level up from the script directory)
|
11 |
+
base_dir = os.path.dirname(script_dir)
|
12 |
+
|
13 |
+
# Construct the path to the config file
|
14 |
+
config_path = os.path.join(base_dir, 'configs', 'config.yaml')
|
15 |
+
|
16 |
+
def load_config(file_path):
|
17 |
+
with open(file_path, 'r') as file:
|
18 |
+
config = yaml.safe_load(file)
|
19 |
+
return config
|
20 |
+
|
21 |
+
def creation_of_vector_database():
|
22 |
+
# Load the configuration from a YAML file
|
23 |
+
config = load_config(config_path)
|
24 |
+
|
25 |
+
# Initialize the Pinecone client
|
26 |
+
pc = Pinecone(
|
27 |
+
api_key=os.getenv('PINECONE_API_KEY')) # Ensure your API key is set in the environment variables
|
28 |
+
|
29 |
+
# Connect to the Pinecone index
|
30 |
+
index_name = config['pinecone']['index_name']
|
31 |
+
dimension = config['pinecone']['dimension']
|
32 |
+
metric = config['pinecone']['metric']
|
33 |
+
# file_path = config['file_location']['file_path']
|
34 |
+
cloud = config['pinecone']['cloud']
|
35 |
+
region = config['pinecone']['region']
|
36 |
+
|
37 |
+
if index_name not in pc.list_indexes().names():
|
38 |
+
pc.create_index(
|
39 |
+
name=index_name,
|
40 |
+
dimension=dimension,
|
41 |
+
metric=metric,
|
42 |
+
spec=ServerlessSpec(
|
43 |
+
cloud=cloud, # Specify your preferred cloud provider
|
44 |
+
region=region # Specify your preferred region
|
45 |
+
)
|
46 |
+
)
|
47 |
+
def creation_of_summary_database():
|
48 |
+
# Load the configuration from a YAML file
|
49 |
+
config = load_config(config_path)
|
50 |
+
|
51 |
+
# Initialize the Pinecone client
|
52 |
+
pc = Pinecone(
|
53 |
+
api_key=os.getenv('PINECONE_API_KEY')) # Ensure your API key is set in the environment variables
|
54 |
+
|
55 |
+
# Connect to the Pinecone index
|
56 |
+
index_name = config['pinecone']['summary_index_name']
|
57 |
+
dimension = config['pinecone']['dimension']
|
58 |
+
metric = config['pinecone']['metric']
|
59 |
+
# file_path = config['file_location']['file_path']
|
60 |
+
cloud = config['pinecone']['cloud']
|
61 |
+
region = config['pinecone']['region']
|
62 |
+
|
63 |
+
if index_name not in pc.list_indexes().names():
|
64 |
+
pc.create_index(
|
65 |
+
name=index_name,
|
66 |
+
dimension=dimension,
|
67 |
+
metric=metric,
|
68 |
+
spec=ServerlessSpec(
|
69 |
+
cloud=cloud, # Specify your preferred cloud provider
|
70 |
+
region=region # Specify your preferred region
|
71 |
+
)
|
72 |
+
)
|
73 |
+
if __name__ == "__main__":
|
74 |
+
creation_of_vector_database()
|
75 |
+
creation_of_summary_database()
|
76 |
+
|
task6_model_deployment/scripts/vector_database_loading.py
CHANGED
@@ -1,91 +1,112 @@
|
|
1 |
-
import yaml
|
2 |
-
import os
|
3 |
-
import os
|
4 |
-
from pinecone import Pinecone, ServerlessSpec
|
5 |
-
from dotenv import load_dotenv
|
6 |
-
import os
|
7 |
-
from dotenv import load_dotenv
|
8 |
-
from llama_index.vector_stores.pinecone import PineconeVectorStore
|
9 |
-
from llama_index.core import StorageContext, VectorStoreIndex
|
10 |
-
from llama_index.core import SimpleDirectoryReader
|
11 |
-
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
|
12 |
-
from llama_index.core import Settings
|
13 |
-
from llama_index.llms.groq import Groq
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
print(
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
index
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import yaml
|
2 |
+
import os
|
3 |
+
import os
|
4 |
+
from pinecone import Pinecone, ServerlessSpec
|
5 |
+
from dotenv import load_dotenv
|
6 |
+
import os
|
7 |
+
from dotenv import load_dotenv
|
8 |
+
from llama_index.vector_stores.pinecone import PineconeVectorStore
|
9 |
+
from llama_index.core import StorageContext, VectorStoreIndex
|
10 |
+
from llama_index.core import SimpleDirectoryReader
|
11 |
+
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
|
12 |
+
from llama_index.core import Settings
|
13 |
+
from llama_index.llms.groq import Groq
|
14 |
+
from llama_index.core.node_parser import SentenceSplitter
|
15 |
+
from llama_index.core import DocumentSummaryIndex
|
16 |
+
|
17 |
+
load_dotenv()
|
18 |
+
script_dir = os.path.dirname(os.path.abspath(__file__))
|
19 |
+
|
20 |
+
# Construct the base directory (one level up from the script directory)
|
21 |
+
base_dir = os.path.dirname(script_dir)
|
22 |
+
|
23 |
+
# Construct the path to the config file
|
24 |
+
config_path = os.path.join(base_dir, 'configs', 'config.yaml')
|
25 |
+
|
26 |
+
def load_config(file_path):
|
27 |
+
with open(file_path, 'r') as file:
|
28 |
+
config = yaml.safe_load(file)
|
29 |
+
return config
|
30 |
+
|
31 |
+
def index_connection():
|
32 |
+
# Load the configuration from a YAML file
|
33 |
+
config = load_config(config_path)
|
34 |
+
|
35 |
+
# Initialize the Pinecone client
|
36 |
+
pc = Pinecone(
|
37 |
+
api_key=os.getenv('PINECONE_API_KEY')
|
38 |
+
)
|
39 |
+
index_name = config['pinecone']['index_name']
|
40 |
+
index = pc.Index(index_name)
|
41 |
+
return index
|
42 |
+
|
43 |
+
def summary_index_connection():
|
44 |
+
# Load the configuration from a YAML file
|
45 |
+
config = load_config(config_path)
|
46 |
+
|
47 |
+
# Initialize the Pinecone client
|
48 |
+
pc = Pinecone(
|
49 |
+
api_key=os.getenv('PINECONE_API_KEY')
|
50 |
+
)
|
51 |
+
index_name = config['pinecone']['summary_index_name']
|
52 |
+
index = pc.Index(index_name)
|
53 |
+
|
54 |
+
return index
|
55 |
+
|
56 |
+
def chunk_documents(directory_path="./data/paul_graham"):
|
57 |
+
"""
|
58 |
+
Reads documents from a specified directory and chunks them.
|
59 |
+
|
60 |
+
Args:
|
61 |
+
directory_path (str): The path of the directory containing documents to read.
|
62 |
+
|
63 |
+
Returns:
|
64 |
+
List[Document]: A list of document chunks that will be indexed.
|
65 |
+
"""
|
66 |
+
# Load documents from the directory
|
67 |
+
documents = SimpleDirectoryReader(directory_path).load_data()
|
68 |
+
|
69 |
+
# Here you could apply further chunking logic if needed (for example, split large documents into smaller chunks)
|
70 |
+
# For now, we're assuming the reader does basic chunking for us
|
71 |
+
|
72 |
+
return documents
|
73 |
+
|
74 |
+
# Part 2: Loading Chunks into Pinecone
|
75 |
+
def load_chunks_into_pinecone(documents):
|
76 |
+
config = load_config(config_path)
|
77 |
+
pinecone_index = index_connection()
|
78 |
+
model_name = config['model']['model_name']
|
79 |
+
embed_model_name = config['embeddings']['model_name']
|
80 |
+
print(embed_model_name)
|
81 |
+
Settings.llm = Groq(model=model_name, api_key=os.getenv('GROQ_API_KEY'))
|
82 |
+
Settings.chunk_size = config['pinecone']['dimension']
|
83 |
+
embed_model = HuggingFaceEmbedding(model_name=embed_model_name)
|
84 |
+
Settings.embed_model = embed_model
|
85 |
+
|
86 |
+
vector_store = PineconeVectorStore(pinecone_index=pinecone_index,add_sparse_vector=True)
|
87 |
+
|
88 |
+
# Create the storage context
|
89 |
+
storage_context = StorageContext.from_defaults(vector_store=vector_store)
|
90 |
+
|
91 |
+
# Create the index with the documents
|
92 |
+
index = VectorStoreIndex.from_documents(documents, storage_context=storage_context)
|
93 |
+
|
94 |
+
splitter = SentenceSplitter(chunk_size=1024)
|
95 |
+
|
96 |
+
summary_index = summary_index_connection()
|
97 |
+
summary_vector_store = PineconeVectorStore(pinecone_index=summary_index)
|
98 |
+
summary_storage_context = StorageContext.from_defaults(vector_store=summary_vector_store)
|
99 |
+
summary_index_from_documents = DocumentSummaryIndex.from_documents(documents, transformations=[splitter], storage_context=summary_storage_context,show_progress=True)
|
100 |
+
|
101 |
+
|
102 |
+
print("Data has been successfully loaded into the Pinecone index!")
|
103 |
+
|
104 |
+
return index,summary_index_from_documents
|
105 |
+
# Example usage
|
106 |
+
if __name__ == "__main__":
|
107 |
+
|
108 |
+
# Step 1: Chunk the documents
|
109 |
+
documents = chunk_documents(directory_path=r"C:\Users\agshi\Desktop\Omdena\Canada Policy\TorontoCanadaChapter_CanPolicyInsight\task6_model_deployment\assets")
|
110 |
+
|
111 |
+
# Step 2: Load the chunks into Pinecone
|
112 |
+
index,summary_index_from_documents = load_chunks_into_pinecone(documents)
|