Spaces:
Sleeping
Sleeping
Upload app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import whisper
|
| 3 |
+
|
| 4 |
+
# Load the Whisper model
|
| 5 |
+
@st.cache_resource
|
| 6 |
+
def load_model():
|
| 7 |
+
return whisper.load_model("turbo")
|
| 8 |
+
|
| 9 |
+
model = load_model()
|
| 10 |
+
|
| 11 |
+
# Streamlit app
|
| 12 |
+
st.title("Audio Transcription App")
|
| 13 |
+
st.header("Using Whisper for Audio Transcription")
|
| 14 |
+
|
| 15 |
+
# File uploader
|
| 16 |
+
uploaded_file = st.file_uploader("Upload an audio file (e.g., MP3, WAV, etc.)", type=["mp3", "wav", "m4a"])
|
| 17 |
+
|
| 18 |
+
if uploaded_file is not None:
|
| 19 |
+
st.audio(uploaded_file, format="audio/mp3", start_time=0)
|
| 20 |
+
|
| 21 |
+
# Transcribe button
|
| 22 |
+
if st.button("Transcribe Audio"):
|
| 23 |
+
with st.spinner("Transcribing..."):
|
| 24 |
+
# Save the uploaded file to a temporary location
|
| 25 |
+
with open("temp_audio_file.mp3", "wb") as temp_file:
|
| 26 |
+
temp_file.write(uploaded_file.read())
|
| 27 |
+
|
| 28 |
+
# Perform transcription
|
| 29 |
+
result = model.transcribe("temp_audio_file.mp3")
|
| 30 |
+
transcription_text = result["text"]
|
| 31 |
+
|
| 32 |
+
st.success("Transcription Completed!")
|
| 33 |
+
st.subheader("Transcription:")
|
| 34 |
+
st.text_area("Here is the transcription:", transcription_text, height=300)
|
| 35 |
+
else:
|
| 36 |
+
st.info("Please upload an audio file to start the transcription.")
|