import datasets import numpy as np import spaces from sentence_transformers import CrossEncoder, SentenceTransformer from table import BASE_REPO_ID ds = datasets.load_dataset(BASE_REPO_ID, split="train") ds.add_faiss_index(column="embedding") bi_model = SentenceTransformer("BAAI/bge-base-en-v1.5") ce_model = CrossEncoder("BAAI/bge-reranker-base") @spaces.GPU(duration=10) def search(query: str, candidate_pool_size: int = 100, retrieval_k: int = 50) -> list[dict]: prefix = "Represent this sentence for searching relevant passages: " q_vec = bi_model.encode(prefix + query, normalize_embeddings=True) _, retrieved_ds = ds.get_nearest_examples("embedding", q_vec, k=candidate_pool_size) ce_inputs = [ (query, f"{retrieved_ds['title'][i]} {retrieved_ds['abstract'][i]}") for i in range(len(retrieved_ds["title"])) ] ce_scores = ce_model.predict(ce_inputs, batch_size=16) sorted_idx = np.argsort(ce_scores)[::-1] return [ {"paper_id": retrieved_ds["paper_id"][i], "ce_score": float(ce_scores[i])} for i in sorted_idx[:retrieval_k] ]