import spaces
import bm25s
from bm25s.hf import BM25HF, TokenizerHF
import gradio as gr
import json
import Stemmer
import time
import torch
import os
from transformers import AutoTokenizer, AutoModel, pipeline , AutoModelForSequenceClassification, AutoModelForCausalLM
from sentence_transformers import SentenceTransformer
import faiss
import numpy as np
import pandas as pd
import torch.nn.functional as F
from datasets import concatenate_datasets, load_dataset, load_from_disk
from huggingface_hub import hf_hub_download
from contextual import ContextualAI
from openai import AzureOpenAI
from datetime import datetime
import sys
from datetime import datetime
from pathlib import Path
from uuid import uuid4
import pickle
from huggingface_hub import CommitScheduler
from ast import literal_eval
import re
import requests
#from huggingface_hub import hf_hub_download
def run_courtlistener_api(casename, citation, court):
#casename = individual_response["casename"]
params = {"q": casename}
url = "https://www.courtlistener.com/api/rest/v4/search/"
response = requests.get(url, params=params)
if response.status_code == 200:
print (response.json()["results"])
result = response.json()["results"][0]
new_url = "https://www.courtlistener.com" + result["absolute_url"]
return f"[Click to see opinion on CourtListener]({new_url})"
else:
return -1
JSON_DATASET_DIR = Path("json_dataset")
JSON_DATASET_DIR.mkdir(parents=True, exist_ok=True)
JSON_DATASET_PATH = JSON_DATASET_DIR / f"train-{uuid4()}.json"
scheduler = CommitScheduler(
repo_id="ai-law-society-lab/federal-queries-save-dataset",
repo_type="dataset",
folder_path=JSON_DATASET_DIR,
path_in_repo="data", token=os.getenv('hf_token')
)
sandbox_api_key=os.getenv('AI_SANDBOX_KEY')
sandbox_endpoint="https://api-ai-sandbox.princeton.edu/"
sandbox_api_version="2024-02-01"
def text_prompt_call(model_to_be_used, system_prompt, user_prompt ):
client_gpt = AzureOpenAI(
api_key=sandbox_api_key,
azure_endpoint = sandbox_endpoint,
api_version=sandbox_api_version # current api version not in preview
)
response = client_gpt.chat.completions.create(
model=model_to_be_used,
temperature=0.0, # temperature = how creative/random the model is in generating response - 0 to 1 with 1 being most creative
max_tokens=1000, # max_tokens = token limit on context to send to the model
messages=[
{"role": "system", "content": system_prompt}, # describes model identity and purpose
{"role": "user", "content": user_prompt}, # user prompt
]
)
return response.choices[0].message.content
def format_metadata_as_str(metadata):
try:
out = metadata["case_name"] + ", " + metadata["court_short_name"] + ", " + metadata["date_filed"] #+ ", precedential status " + metadata["precedential_status"]
except:
out = ""
return out
def show_user_query(user_message, history):
'''
Displays user query in the chatbot and removes from textbox.
:param user_message: user query inputted.
:param history: 2D array representing chatbot-user conversation.
:return:
'''
return "", history + [[user_message, None]]
def format_metadata_for_reranking(metadata, text, idx):
#print (metadata)
#keys = [["case_name", "case name"], ["court_short_name", "court"], ["date_filed", "year"], ["citation_count", "citation count"], ["precedential_status", "precedential status"]]
keys = [["court_short_name", "court"], ["date_filed", "year"], ["citation_count", "citation count"]]# , ["precedential_status", "precedential status"]]
out_str = []
out_str = ["" + str(idx) + ""]
for key in keys:
i,j = key
out_str.append("<" + j + ">" + str(metadata[i]) + "" + j + ">")
out_str.append("" + " ".join(text.split()) + "")
return "\n".join(out_str) + "\n"
def run_extractive_qa(query, contexts):
extracted_passages = extractive_qa([{"question": query, "context": context} for context in contexts])
return extracted_passages
@spaces.GPU(duration=15)
def respond_user_query(history):
'''
Overwrite the value of current pairing's history with generated text
and displays response character-by-character with some lag.
:param history: 2D array of chatbot history filled with user-bot interactions
:return: history updated with bot's latest message.
'''
start_time_global = time.time()
query = history[0][0]
start_time_global = time.time()
responses = run_retrieval(query)
print("--- run retrieval: %s seconds ---" % (time.time() - start_time_global))
#print (responses)
contexts = [individual_response["text"] for individual_response in responses][:NUM_RESULTS]
extracted_passages = run_extractive_qa(query, contexts)
for individual_response, extracted_passage in zip(responses, extracted_passages):
start, end = extracted_passage["start"], extracted_passage["end"]
# highlight text
text = individual_response["text"]
text = text[:start] + " **" + text[start:end] + "** " + text[end:]
# display queries in interface
formatted_response = "##### "
if individual_response["meta_data"]:
formatted_response += individual_response["meta_data"]
else:
formatted_response += individual_response["opinion_idx"]
casename = individual_response["metadata_reranking"]["case_name"]
citation = " ".join(individual_response["metadata_reranking"]["citations"])
court = individual_response["metadata_reranking"]["court_short_name"]
#court = metadata_caselaw[individual_response["opinion_idx"]]["court_short_name"]
hyperlink = run_courtlistener_api(casename, citation, court)
if hyperlink != -1:
formatted_response += "\n" + hyperlink + "\n"
formatted_response += "\n" + text + "\n\n"
history = history + [[None, formatted_response]]
print("--- Extractive QA: %s seconds ---" % (time.time() - start_time_global))
return [history, responses]
def switch_to_reviewing_framework():
'''
Replaces textbox for entering user query with annotator review select.
:return: updated visibility for textbox and radio button props.
'''
return gr.Textbox(visible=False), gr.Dataset(visible=False), gr.Textbox(visible=True, interactive=True), gr.Button(visible=True)
def reset_interface():
'''
Resets chatbot interface to original position where chatbot history,
reviewing is invisbile is empty and user input textbox is visible.
:return: textbox visibility, review radio button invisibility,
next_button invisibility, empty chatbot
'''
# remove tmp highlighted word documents
#for fn in os.listdir("tmp-docs"):
# os.remove(os.path.join("tmp-docs", fn))
return gr.Textbox(visible=True), gr.Button(visible=False), gr.Textbox(visible=False, value=""), None, gr.JSON(visible=False, value=[]), gr.Dataset(visible=True)
###################################################
def mark_like(response_json, like_data: gr.LikeData):
index_of_msg_reviewed = like_data.index[0] - 1 # 0-indexing
# add liked information to res
response_json[index_of_msg_reviewed]["is_msg_liked"] = like_data.liked
return response_json
"""
def save_json(name: str, greetings: str) -> None:
"""
def register_review(history, additional_feedback, response_json):
'''
Writes user review to output file.
:param history: 2D array representing bot-user conversation so far.
:return: None, writes to output file.
'''
res = { "user_query": history[0][0],
"responses": response_json,
"timestamp": datetime.now().strftime('%Y-%m-%d %H:%M:%S'),
"additional_feedback": additional_feedback
}
# ok, have to add some things, but should be easy
with scheduler.lock:
with JSON_DATASET_PATH.open("a") as f:
json.dump(res, f)
f.write("\n")
# load search functionality here
def load_bm25():
"""
stemmer = Stemmer.Stemmer("english")
retriever = bm25s.BM25.load("NJ_index_LLM_chunking", mmap=False)
return retriever, stemmer # titles
"""
retriever = BM25HF.load_from_hub("ai-law-society-lab/bm25s-federal-index", token=os.getenv('hf_token'))
stemmer = Stemmer.Stemmer("english")
splitter = r"\b[\w()/:-]+\b"
bm25_tokenizer = TokenizerHF(stemmer=stemmer, splitter=splitter, lower=True)
bm25_tokenizer.load_vocab_from_hub("ai-law-society-lab/bm25s-federal-index", token=os.getenv('hf_token'))
return retriever, bm25_tokenizer
def run_bm25(query):
query_tokens = bm25_tokenizer.tokenize(query)
results, scores = retriever.retrieve(query_tokens, k=5)
return results[0]
def load_faiss_index(embeddings):
nb, d = embeddings.shape # database size, dimension
faiss_index = faiss.IndexFlatL2(d) # build the index
faiss_index.add(embeddings) # add vectors to the index
return faiss_index
#@spaces.GPU(duration=10)
def run_dense_retrieval(query):
if "NV" in model_name:
query_prefix = "Instruct: Given a question, retrieve passages that answer the question\nQuery: "
max_length = 32768
print (query)
with torch.no_grad():
query_embeddings = model.encode([query], instruction=query_prefix, max_length=max_length)
query_embeddings = F.normalize(query_embeddings, p=2, dim=1)
query_embeddings = query_embeddings.cpu().numpy()
return query_embeddings
#TODO implement this
def rerank_with_chatGPT(query, search_results):
search_results_as_dict = {str(i["index"]):i for i in search_results}
system_prompt = """You are given a list of search results for a query. Rerank the search results such that the paragraphs answering the query in the most comprehensive way are listed first. Additionaly, prioritize reranking in the following order:
1. prioritize metadata according to the query.
2. If the query doesn't ask for specific metadata, prioritize paragraphs from higher courts (Supreme Court first, Circuit courts next, district courts last)
3. Prioritize paragraphs which have higher citation counts.
4. Prioritize parapgrahs from more recent opinions.
Return a python list with the ids of the five highest ranking results, nothing else.
""" + query + "\n\n"
user_prompt = []
for i in search_results[:50]:
user_prompt.append(format_metadata_for_reranking(i["metadata_reranking"], i["text"], i["index"]))
user_prompt = "\n".join(user_prompt)
out = text_prompt_call("gpt-4o", system_prompt, user_prompt)
print ("OUT", out)
try:
out = literal_eval(re.findall(r"\[.*?\]", out)[0])
out_dict = [search_results_as_dict[str(i)] for i in out]
print ("SUCCESS")
except Exception as e:
print (e)
out_dict = search_results[:5]
print (out_dict)
return out_dict
# let's do it
def run_retrieval(query):
query = " ".join(query.split())
print ("query", query)
indices_bm25 = run_bm25(query)
query_embeddings = run_dense_retrieval(query)
#query_embeddings = pca_model.transform(query_embeddings)
D, I = faiss_index.search(query_embeddings, 35)
scores_embeddings = list(D[0])
indices_embeddings = I[0]
indices_embeddings = [int(i) for i in indices_embeddings]
for i in indices_bm25:
if i not in indices_embeddings:
indices_embeddings.append(int(i))
scores_embeddings.append(-100) #bm25s score is meaningless I think
# ok, and now bm25s as well
#results = [{"index":i, "NV_score":j, "text": chunks[i]} for i,j in zip(indices_embeddings, scores_embeddings)]
results = [{"index":i, "NV_score":j, "text":ds_paragraphs[i]["paragraph"]} for i,j in zip(indices_embeddings, scores_embeddings)]
out_dict = []
covered = set()
for item in results:
index = item["index"]
item["query"] = query
item["opinion_idx"] = str(ds_paragraphs[index]["idx"])
# only recover one paragraph / opinion
if item["opinion_idx"] in covered:
continue
covered.add(item["opinion_idx"])
if item["opinion_idx"] in metadata:
item["meta_data"] = format_metadata_as_str(metadata[item["opinion_idx"]])
else:
item["meta_data"] = ""
if item["opinion_idx"] in metadata:
item["metadata_reranking"] = metadata[item["opinion_idx"]]
else:
item["metadata_reranking"] = ""
out_dict.append(item)
print ("out_dict_before_reranking")
#print (out_dict[:50])
res = {"result_type":"chatgpt_reranking"}
res["query"] = query
res["input_reranking"] = [int(i["index"]) for i in out_dict]
res["scores_input_reranking"] = [float(i["NV_score"]) for i in out_dict]
out_dict = rerank_with_chatGPT(query, out_dict)[:NUM_RESULTS]
res["output_reranking"] = [int(i["index"]) for i in out_dict]
res["scores_output_reranking"] = [float(i["NV_score"]) for i in out_dict]
print (res)
# is that already good?
with scheduler.lock:
with JSON_DATASET_PATH.open("a") as f:
json.dump(res, f)
f.write("\n")
print ("RETURNING OUT DICT")
return out_dict
NUM_RESULTS = 5
model_name = 'nvidia/NV-Embed-v2'
#device = torch.device("cuda")
device = torch.device("mps")
extractive_qa = pipeline("question-answering", model="ai-law-society-lab/extractive-qa-model", tokenizer="FacebookAI/roberta-large", device_map="auto", token=os.getenv('hf_token'))
ds_paragraphs = load_dataset("ai-law-society-lab/federal-caselaw-paragraphs", token=os.getenv('hf_token'))["train"]
"""
ds = load_dataset("ai-law-society-lab/federal-caselaw-embeddings-PCA-768", token=os.getenv('hf_token'))["train"]
ds = ds.with_format("np")
faiss_index = load_faiss_index(ds["embeddings"])
"""
# repo_id = "ai-law-society-lab/save_OPD_project_output"
# url = "https://huggingface.co/datasets/ai-law-society-lab/save_OPD_project_output"
#url = "https://huggingface.co/datasets/ai-law-society-lab/autofaiss-federal-index/"
#faiss_index = "/Users/ds8100/Documents/NJ-caselaw-index/federal-index-faiss/knn.index"
repo_id = "ai-law-society-lab/autofaiss-federal-index"
file_path = hf_hub_download(repo_id=repo_id, filename="knn.index", repo_type="dataset", token=os.getenv('hf_token'))
faiss_index = faiss.read_index(file_path)
retriever, bm25_tokenizer = load_bm25()
"""
with open('PCA_model.pkl', 'rb') as f:
pca_model = pickle.load(f)
"""
with open("Federal_caselaw_metadata.json") as f:
metadata = json.load(f)
def load_embeddings_model(model_name = "intfloat/e5-large-v2"):
if "NV" in model_name:
#model = AutoModel.from_pretrained('nvidia/NV-Embed-v2', trust_remote_code=True, torch_dtype=torch.bfloat16, device_map="auto")
model = AutoModel.from_pretrained('nvidia/NV-Embed-v2', trust_remote_code=True, torch_dtype=torch.float16, device_map="auto")
model.eval()
return model
if "NV" in model_name:
model = load_embeddings_model(model_name=model_name)
examples = ["Can officers always order a passenger out of a car?"]
css = """
.svelte-i3tvor {visibility: hidden}
.row.svelte-hrj4a0.unequal-height {
align-items: stretch !important
}
"""
with gr.Blocks(css=css, theme = gr.themes.Monochrome(primary_hue="pink",)) as demo:
chatbot = gr.Chatbot(height="45vw", autoscroll=False)
query_textbox = gr.Textbox()
#rerank_instruction = gr.Textbox(label="Rerank Instruction Prompt", value="If not otherwise specified in the query, prioritize Supreme Court opinions or opinions from higher courts. More recent, highly cited and published documents should also be weighted higher, unless otherwise specified in the query.")
examples = gr.Examples(examples, query_textbox)
response_json = gr.JSON(visible=False, value=[])
print (response_json)
chatbot.like(mark_like, response_json, response_json)
feedback_textbox = gr.Textbox(label="Additional feedback?", visible=False)
next_button = gr.Button(value="Submit Feedback", visible=False)
query_textbox.submit(show_user_query, [query_textbox, chatbot], [query_textbox, chatbot], queue=False).then(
respond_user_query, chatbot, [chatbot, response_json]).then(
switch_to_reviewing_framework, None, [query_textbox, examples.dataset, feedback_textbox, next_button]
)
# Handle page reset and review save in database
next_button.click(register_review, [chatbot, feedback_textbox, response_json], None).then(
reset_interface, None, [query_textbox, next_button, feedback_textbox, chatbot, response_json, examples.dataset])
# Launch application
demo.launch()