Spaces:
Runtime error
Runtime error
File size: 17,310 Bytes
361c067 2acb4a6 2570365 2acb4a6 2c0d7eb 2570365 020f793 2c0d7eb 2570365 2c0d7eb 2570365 2acb4a6 2570365 5a41849 2570365 5a41849 2570365 5a41849 2570365 020f793 2570365 5a41849 2570365 5a41849 2570365 020f793 2570365 020f793 b9400c5 020f793 b9400c5 020f793 2570365 020f793 2570365 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 |
import spaces
import bm25s
import gradio as gr
import json
import Stemmer # from PyStemmer
import time
import torch
# from retrieval import *
import os
from transformers import AutoTokenizer, AutoModel, pipeline , AutoModelForSequenceClassification, AutoModelForCausalLM
from sentence_transformers import SentenceTransformer
import faiss
import numpy as np
import pandas as pd
import torch.nn.functional as F
from datasets import concatenate_datasets, load_dataset, load_from_disk
from huggingface_hub import hf_hub_download
from contextual import ContextualAI
from openai import AzureOpenAI
from datetime import datetime
import sys
"""
# to switch:
device to cuda
enable bfloat16
"""
sandbox_api_key=os.getenv('AI_SANDBOX_KEY')
sandbox_endpoint="https://api-ai-sandbox.princeton.edu/"
sandbox_api_version="2024-02-01"
def text_prompt_call(model_to_be_used, system_prompt, user_prompt ):
client_gpt = AzureOpenAI(
api_key=sandbox_api_key,
azure_endpoint = sandbox_endpoint,
api_version=sandbox_api_version # current api version not in preview
)
response = client_gpt.chat.completions.create(
model=model_to_be_used,
temperature=0.7, # temperature = how creative/random the model is in generating response - 0 to 1 with 1 being most creative
max_tokens=1000, # max_tokens = token limit on context to send to the model
messages=[
{"role": "system", "content": system_prompt}, # describes model identity and purpose
{"role": "user", "content": user_prompt}, # user prompt
]
)
return response.choices[0].message.content
api_key = os.getenv("contextual_apikey")
base_url = "https://api.contextual.ai/v1"
rerank_api_endpoint = f"{base_url}/rerank"
reranker = "ctxl-rerank-en-v1-instruct"
client = ContextualAI (api_key = api_key, base_url = base_url)
#instruction_model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen2.5-7B-Instruct", torch_dtype=torch.bfloat16, device_map="auto")
#instruction_tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2.5-7B-Instruct")
def update_instruction(query):
system_prompt_instructions = """You are given a query and an instruction. Modify the instruction to prioritize the types of documents the query specifies. If the query asks for specific details (e.g., court level, timeframe, citation importance), incorporate those details into the instruction while maintaining its original structure. If the query does not specify particular document preferences, return "not applicable."
Example 1
Query: Find me older appellate court opinions on whether officers can always order passengers out of a car.
Instruction: Prioritize older appellate court opinions
Example 2
Query: Show me recent Supreme Court rulings on digital privacy rights.
Output: Prioritize recent Supreme Court opinions.
Example 3
Query: Find legal opinions on self-defense laws.
Output: not applicable
Example 4
Query: Locate federal district court rulings from the last five years on employer vaccine mandates.
Output: Prioritize federal district court rulings from the last five years.
Example 5
Query: Show me influential appellate court decisions on contract interpretation.
Output: Prioritize influential appellate court decisions.
Example 6
Query: Find state supreme court cases that discuss the necessity of search warrants for vehicle searches.
Output: Prioritize state supreme court cases on search warrants for vehicle searches.
Example 7
Query: Show me legal opinions about landlord-tenant disputes.
Output: not applicable
"""
"""
messages = [{"role": "system", "content": system_prompt_instructions}]
messages.append({"role": "user", "content": "Query: " + query})
example = instruction_tokenizer.apply_chat_template(messages, add_generation_prompt = True, tokenize=True,pad_to_multiple_of=8, do_pan_and_scan=True, return_tensors="pt")
out = instruction_model.generate(example, max_new_tokens=50)
updated = instruction_tokenizer.decode(out[0])
updated = updated.split("<|im_start|>assistant")[-1].split("<|im_end|>")[0].strip()
"""
updated = text_prompt_call("gpt-4o", system_prompt_instructions, query)
print ("UPDATED INSTRUCTION HERE", updated)
if updated == "not applicable":
return "Prioritize Supreme Court opinions or opinions from higher courts. More recent, highly cited and published documents should also be weighted higher."
return updated
# oh god
def rerank_with_contextual_AI(results):
instruction = "Prioritize Supreme Court opinions or opinions from higher courts. More recent, highly cited and published documents should also be weighted higher."
#instruction = rerank_instruction
query = results[0]["query"]
docs = [i["text"] for i in results]
metadata = [i["meta_data"] for i in results]
# rewrite instruction if applicable
instruction = update_instruction(query)
rerank_response = client.rerank.create(
query = query,
instruction = instruction,
documents = docs,
metadata = metadata,
model = reranker
).to_dict()
print (rerank_response)
# {'results': [{'index': 3, 'relevance_score': 0.39700255}, {'index': 2, 'relevance_score': 0.38903061}, {'index': 10, 'relevance_score': 0.36989796}, {'index': 8, 'relevance_score': 0.36830357}, {'index': 1, 'relevance_score': 0.36415816}, {'index': 11, 'relevance_score': 0.35778061}, {'index': 0, 'relevance_score': 0.35586735}, {'index': 4, 'relevance_score': 0.32589286}, {'index': 12, 'relevance_score': 0.32589286}, {'index': 7, 'relevance_score': 0.30931122}, {'index': 9, 'relevance_score': 0.30739796}, {'index': 13, 'relevance_score': 0.29145408}, {'index': 5, 'relevance_score': 0.2755102}, {'index': 6, 'relevance_score': 0.27295918}]}
#ok, what next?
reranked_docs = []
for i in rerank_response["results"]:
reranked_docs.append(results[i["index"]])
reranked_docs[-1]["relevance_score"] = i["relevance_score"]
return reranked_docs
def format_metadata_for_reranking(metadata):
try:
out = metadata["case_name"] + ", " + metadata["court_short_name"] + ", " + "year: " + metadata["date_filed"] + " citation count: " + str(metadata["citation_count"]) + ", precedential status " + metadata["precedential_status"]
except:
out = ""
return out
def format_metadata_as_str(metadata):
try:
out = metadata["case_name"] + ", " + metadata["court_short_name"] + ", " + metadata["date_filed"] + ", precedential status " + metadata["precedential_status"]
except:
out = ""
return out
def show_user_query(user_message, history):
'''
Displays user query in the chatbot and removes from textbox.
:param user_message: user query inputted.
:param history: 2D array representing chatbot-user conversation.
:return:
'''
return "", history + [[user_message, None]]
def run_extractive_qa(query, contexts):
extracted_passages = extractive_qa([{"question": query, "context": context} for context in contexts])
return extracted_passages
@spaces.GPU(duration=15)
def respond_user_query(history):
'''
Overwrite the value of current pairing's history with generated text
and displays response character-by-character with some lag.
:param history: 2D array of chatbot history filled with user-bot interactions
:return: history updated with bot's latest message.
'''
start_time_global = time.time()
query = history[0][0]
start_time_global = time.time()
responses = run_retrieval(query)
print("--- run retrieval: %s seconds ---" % (time.time() - start_time_global))
#print (responses)
contexts = [individual_response["text"] for individual_response in responses][:NUM_RESULTS]
extracted_passages = run_extractive_qa(query, contexts)
for individual_response, extracted_passage in zip(responses, extracted_passages):
start, end = extracted_passage["start"], extracted_passage["end"]
# highlight text
text = individual_response["text"]
text = text[:start] + " **" + text[start:end] + "** " + text[end:]
# display queries in interface
formatted_response = "##### "
if individual_response["meta_data"]:
formatted_response += individual_response["meta_data"]
else:
formatted_response += individual_response["opinion_idx"]
formatted_response += "\n" + text + "\n\n"
history = history + [[None, formatted_response]]
print("--- Extractive QA: %s seconds ---" % (time.time() - start_time_global))
return [history, responses]
def switch_to_reviewing_framework():
'''
Replaces textbox for entering user query with annotator review select.
:return: updated visibility for textbox and radio button props.
'''
return gr.Textbox(visible=False), gr.Dataset(visible=False), gr.Textbox(visible=True, interactive=True), gr.Button(visible=True)
def reset_interface():
'''
Resets chatbot interface to original position where chatbot history,
reviewing is invisbile is empty and user input textbox is visible.
:return: textbox visibility, review radio button invisibility,
next_button invisibility, empty chatbot
'''
# remove tmp highlighted word documents
#for fn in os.listdir("tmp-docs"):
# os.remove(os.path.join("tmp-docs", fn))
return gr.Textbox(visible=True), gr.Button(visible=False), gr.Textbox(visible=False, value=""), None, gr.JSON(visible=False, value=[]), gr.Dataset(visible=True)
###################################################
def mark_like(response_json, like_data: gr.LikeData):
index_of_msg_reviewed = like_data.index[0] - 1 # 0-indexing
# add liked information to res
response_json[index_of_msg_reviewed]["is_msg_liked"] = like_data.liked
return response_json
"""
def save_json(name: str, greetings: str) -> None:
"""
def register_review(history, additional_feedback, response_json):
'''
Writes user review to output file.
:param history: 2D array representing bot-user conversation so far.
:return: None, writes to output file.
'''
res = { "user_query": history[0][0],
"responses": response_json,
"timestamp": datetime.now().strftime('%Y-%m-%d %H:%M:%S'),
"additional_feedback": additional_feedback
}
print (res)
# load search functionality here
def load_bm25():
stemmer = Stemmer.Stemmer("english")
retriever = bm25s.BM25.load("NJ_index_LLM_chunking", mmap=False)
return retriever, stemmer # titles
def run_bm25(query):
query_tokens = bm25s.tokenize(query, stemmer=stemmer)
results, scores = retriever.retrieve(query_tokens, k=5)
return results[0]
def load_faiss_index(embeddings):
nb, d = embeddings.shape # database size, dimension
faiss_index = faiss.IndexFlatL2(d) # build the index
faiss_index.add(embeddings) # add vectors to the index
return faiss_index
#@spaces.GPU(duration=10)
def run_dense_retrieval(query):
if "NV" in model_name:
query_prefix = "Instruct: Given a question, retrieve passages that answer the question\nQuery: "
max_length = 32768
print (query)
with torch.no_grad():
query_embeddings = model.encode([query], instruction=query_prefix, max_length=max_length)
query_embeddings = F.normalize(query_embeddings, p=2, dim=1)
query_embeddings = query_embeddings.cpu().numpy()
return query_embeddings
def load_NJ_caselaw():
if os.path.exists("/scratch/gpfs/ds8100/datasets/NJ_opinions_modernbert_splitter.jsonl"):
df = pd.read_json("/scratch/gpfs/ds8100/datasets/NJ_opinions_modernbert_splitter.jsonl", lines=True)
else:
df = pd.read_json("NJ_opinions_modernbert_splitter.jsonl", lines=True)
titles, chunks = [],[]
for i, row in df.iterrows():
texts = [i for i in row["texts"] if len(i.split()) > 25 and len(i.split()) < 750]
texts = [" ".join(i.strip().split()) for i in texts]
chunks.extend(texts)
titles.extend([row["id"]] * len(texts))
ids = list(range(len(titles)))
assert len(ids) == len(titles) == len(chunks)
return ids, titles, chunks
def run_retrieval(query):
query = " ".join(query.split())
print ("query", query)
"""
indices_bm25 = run_bm25(query)
scores_embeddings, indices_embeddings = run_dense_retrieval(query)
indices = list(set(indices_bm25).union(indices_embeddings))
#docs = [{"id":i, "text":chunks[i]} for i in indices]
docs = [chunks[i] for i in indices]
results_reranking = rerank(query, docs, indices) #results = [{"doc":docs[i], "score":probs[i], "id":indices[i]} for i in argsort]
"""
start_time = time.time()
query_embeddings = run_dense_retrieval(query)
np.save("test_query_embeddings", query_embeddings)
print("--- Nvidia Embedding: %s seconds ---" % (time.time() - start_time))
D, I = faiss_index.search(query_embeddings, 45)
print("--- Faiss retrieval: %s seconds ---" % (time.time() - start_time))
scores_embeddings = D[0]
indices_embeddings = I[0]
docs = [chunks[i] for i in indices_embeddings]
results = [{"id":i, "score":j} for i,j in zip(indices_embeddings, scores_embeddings)]
out_dict = []
covered = set()
for item in results:
tmp = {}
index = item["id"]
tmp["query"] = query
tmp["index"] = index #indices[index]
tmp["NV_score"] = item["score"]
tmp["opinion_idx"] = str(titles[index])
# only recover one paragraph / opinion
if tmp["opinion_idx"] in covered:
continue
covered.add(tmp["opinion_idx"])
if tmp["opinion_idx"] in metadata:
tmp["meta_data"] = format_metadata_for_reranking(metadata[tmp["opinion_idx"]])
else:
tmp["meta_data"] = ""
# so far so good
tmp["text"] = chunks[tmp["index"]]
out_dict.append(tmp)
print (out_dict)
# and now, rerank
#out_dict = rerank_with_contextual_AI(out_dict)
return out_dict
NUM_RESULTS = 5
model_name = 'nvidia/NV-Embed-v2'
device = torch.device("cuda")
#device = torch.device("cpu")
#device = torch.device("mps")
extractive_qa = pipeline("question-answering", model="ai-law-society-lab/extractive-qa-model", tokenizer="FacebookAI/roberta-large", device_map="auto", token=os.getenv('hf_token'))
ids, titles, chunks = load_NJ_caselaw()
#@profile
def profiling_faiss_index():
ds = load_dataset("ai-law-society-lab/NJ_embeddings", token=os.getenv('hf_token'))["train"]
print (sys.getsizeof(ds))
ds = ds.with_format("np")
print (sys.getsizeof(ds))
print (ds)
faiss_index = load_faiss_index(ds["embeddings"])
#ds.add_faiss_index(column='embeddings')
#print (sys.getsizeof(faiss_index))
return faiss_index
faiss_index = profiling_faiss_index()
with open("NJ_caselaw_metadata.json") as f:
metadata = json.load(f)
def load_embeddings_model(model_name = "intfloat/e5-large-v2"):
if "NV" in model_name:
model = AutoModel.from_pretrained('nvidia/NV-Embed-v2', trust_remote_code=True, torch_dtype=torch.bfloat16, device_map="auto")
#model = AutoModel.from_pretrained('nvidia/NV-Embed-v2', trust_remote_code=True, torch_dtype=torch.float16, device_map="auto")
model.eval()
return model
if "NV" in model_name:
model = load_embeddings_model(model_name=model_name)
examples = ["Can officers always order a passenger out of a car?","Find me briefs about credential searches", "Can police search an impounded car without a warrant?", "State is arguing State v. Carty is not good law"]
css = """
.svelte-i3tvor {visibility: hidden}
.row.svelte-hrj4a0.unequal-height {
align-items: stretch !important
}
"""
with gr.Blocks(css=css, theme = gr.themes.Monochrome(primary_hue="pink",)) as demo:
chatbot = gr.Chatbot(height="45vw", autoscroll=False)
query_textbox = gr.Textbox()
#rerank_instruction = gr.Textbox(label="Rerank Instruction Prompt", value="If not otherwise specified in the query, prioritize Supreme Court opinions or opinions from higher courts. More recent, highly cited and published documents should also be weighted higher, unless otherwise specified in the query.")
examples = gr.Examples(examples, query_textbox)
response_json = gr.JSON(visible=False, value=[])
print (response_json)
chatbot.like(mark_like, response_json, response_json)
feedback_textbox = gr.Textbox(label="Additional feedback?", visible=False)
next_button = gr.Button(value="Submit Feedback", visible=False)
query_textbox.submit(show_user_query, [query_textbox, chatbot], [query_textbox, chatbot], queue=False).then(
respond_user_query, chatbot, [chatbot, response_json]).then(
switch_to_reviewing_framework, None, [query_textbox, examples.dataset, feedback_textbox, next_button]
)
# Handle page reset and review save in database
next_button.click(register_review, [chatbot, feedback_textbox, response_json], None).then(
reset_interface, None, [query_textbox, next_button, feedback_textbox, chatbot, response_json, examples.dataset])
# Launch application
demo.launch() |