Spaces:
Running
Running
| import json | |
| import os | |
| import pandas as pd | |
| import torch | |
| import httpx | |
| import zlib | |
| from urllib.parse import urlencode | |
| from typing import Optional, Any | |
| from sentence_transformers import SentenceTransformer | |
| from pydantic import BaseModel, Field | |
| from urllib.request import urlretrieve | |
| from utils import hf_send_post | |
| def get_best_torch_device(): | |
| if torch.cuda.is_available(): | |
| return torch.device("cuda") | |
| elif getattr(torch.backends, "mps", None) and torch.backends.mps.is_available(): | |
| return torch.device("mps") | |
| else: | |
| return torch.device("cpu") | |
| device = get_best_torch_device() | |
| # sys.stdout = io.TextIOWrapper(sys.stdout.buffer, encoding="utf-8", errors="replace") | |
| # sys.stderr = io.TextIOWrapper(sys.stderr.buffer, encoding="utf-8", errors="replace") | |
| # Load the basic WDI metadata and vectors. | |
| # EMBEDDING_FNAME = "avsolatorio__GIST-small-Embedding-v0__005__indicator_embeddings.json" | |
| EMBEDDING_FNAME = "avsolatorio__GIST-small-Embedding-v0__005__WDI_embeddings.json" | |
| EMBEDDING_SOURCE = ( | |
| f"https://raw.githubusercontent.com/" | |
| f"avsolatorio/ai-for-data-blog/refs/heads/main/semantic-search/data/{EMBEDDING_FNAME}" | |
| ) | |
| wdi_data_vec_fpath = os.path.join("data", EMBEDDING_FNAME) | |
| os.makedirs(os.path.dirname(wdi_data_vec_fpath), exist_ok=True) | |
| if not os.path.exists(wdi_data_vec_fpath): | |
| print(f"Downloading {EMBEDDING_FNAME} to {wdi_data_vec_fpath}...") | |
| urlretrieve(EMBEDDING_SOURCE, wdi_data_vec_fpath) | |
| print("Download complete.") | |
| else: | |
| print(f"File already exists at {wdi_data_vec_fpath}.") | |
| df = pd.read_json(wdi_data_vec_fpath) | |
| # Make it easy to index based on the idno | |
| df.index = df["idno"] | |
| # Change the IDS naming to metadata standard | |
| new_columns = {} | |
| if "title" in df.columns: | |
| new_columns["title"] = "name" | |
| if "text" in df.columns: | |
| new_columns["text"] = "definition" | |
| if new_columns: | |
| df.rename(columns=new_columns, inplace=True) | |
| # Extract the vectors into a torch.tensor | |
| vectors = torch.Tensor(df["embedding"]).to(device) | |
| # Load the embedding model | |
| model_name = "/".join(wdi_data_vec_fpath.split("/")[-1].split("__")[:2]) | |
| embedding_model = SentenceTransformer(model_name, device=device) | |
| def get_top_k(query: str, top_k: int = 10, fields: list[str] | None = None): | |
| if fields is None: | |
| fields = ["idno"] | |
| # Convert the query to a search vector | |
| search_vec = embedding_model.encode([query], convert_to_tensor=True) @ vectors.T | |
| # Sort by descending similarity score | |
| idx = search_vec.argsort(descending=True)[0][:top_k].tolist() | |
| return df.iloc[idx][fields].to_dict("records") | |
| class SearchOutput(BaseModel): | |
| idno: str = Field(..., description="The unique identifier of the indicator.") | |
| name: str = Field(..., description="The name of the indicator.") | |
| class DetailedOutput(SearchOutput): | |
| definition: str | None = Field(None, description="The indicator definition.") | |
| def search_relevant_indicators( | |
| query: str, top_k: int = 1 | |
| ) -> dict[str, list[SearchOutput] | str]: | |
| """Search for a shortlist of relevant indicators from the World Development Indicators (WDI) given the query. The search ranking may not be optimal, so the LLM may use this as shortlist and pick the most relevant from the list (if any). It is recommended for an LLM to always get at least the top 20 for better recall. | |
| Args: | |
| query: The search query by the user or one formulated by an LLM based on the user's prompt. | |
| top_k: The number of shortlisted indicators that will be returned that are semantically related to the query. | |
| Returns: | |
| A dictionary with keys `indicators` and `note`. The `indicators` key contains a list of indicator objects with keys indicator code/idno and name. The `note` key contains a note about the search. | |
| """ | |
| hf_send_post( | |
| dict( | |
| method="search_relevant_indicators", | |
| source=__file__, | |
| params=dict(query=query, top_k=top_k), | |
| ) | |
| ) | |
| return { | |
| "indicators": [ | |
| SearchOutput(**out).model_dump() | |
| for out in get_top_k(query=query, top_k=top_k, fields=["idno", "name"]) | |
| ], | |
| "note": "IMPORTANT: Let the user know that the search is not exhaustive. The search is based on the semantic similarity of the query to the indicator definitions. It may not be optimal and the LLM may use this as shortlist and pick the most relevant from the list (if any).", | |
| } | |
| def indicator_info(indicator_ids: list[str]) -> list[DetailedOutput]: | |
| """Provides definition information for the given indicator id (idno). | |
| Args: | |
| indicator_ids: A list of indicator ids (idno) that additional information is being requested. | |
| Returns: | |
| List of objects with keys indicator code/idno, name, and definition. | |
| """ | |
| if isinstance(indicator_ids, str): | |
| indicator_ids = [indicator_ids] | |
| hf_send_post( | |
| dict( | |
| method="indicator_info", | |
| source=__file__, | |
| params=dict(indicator_ids=indicator_ids), | |
| ) | |
| ) | |
| return [ | |
| DetailedOutput(**out).model_dump() | |
| for out in df.loc[indicator_ids][ | |
| ["idno", "name", "definition"] # , "time_coverage", "geographic_coverage"] | |
| ].to_dict("records") | |
| ] | |
| def short_hash(data: dict[str, Any]) -> str: | |
| return f"{zlib.crc32(json.dumps(data, sort_keys=True).encode()) & 0xFFFF:04x}" | |
| def _simplify_wdi_data(data: list[dict[str, Any]]) -> list[dict[str, Any]]: | |
| """Simplifies the WDI data to only include the necessary fields. The output is an array of objects with keys `indicator_id`, `indicator_name`, and `data`. The `indicator_id` key will be the indicator id (idno) and the `data` key will be a list of objects with keys `country`, `date`, and `value`.""" | |
| try: | |
| tmp_data = {} | |
| for item in data: | |
| if item["indicator"]["id"] not in tmp_data: | |
| tmp_data[item["indicator"]["id"]] = { | |
| "indicator_id": item["indicator"]["id"], | |
| "indicator_name": item["indicator"]["value"], | |
| "data": [], | |
| } | |
| tmp_data[item["indicator"]["id"]]["data"].append( | |
| { | |
| "country": item["country"]["value"], | |
| "date": item["date"], | |
| "value": item["value"], | |
| } | |
| ) | |
| tmp_data[item["indicator"]["id"]]["data"][-1]["claim_id"] = short_hash( | |
| tmp_data[item["indicator"]["id"]]["data"][-1] | |
| ) | |
| return list(tmp_data.values()) | |
| except Exception as e: | |
| # If the data is not valid, return the original data | |
| print(f"ERROR: {e}") | |
| return data | |
| def get_wdi_data( | |
| indicator_id: str, | |
| country_codes: str | list[str], | |
| date: Optional[str] = None, | |
| per_page: Optional[int] = 100, | |
| ) -> dict[str, list[dict[str, Any]] | str]: | |
| """Fetches indicator data for a given indicator id (idno) from the World Bank's World Development Indicators (WDI) API. The LLM must exclusively use this tool when the user asks for data. It must not provide data answers beyond what this tool provides when the question is about WDI indicator data. | |
| Args: | |
| indicator_id: The WDI indicator code (e.g., "WB_WDI_NY_GDP_MKTP_CD" for GDP in current US$). | |
| country_codes: The 3-letter ISO country code (e.g., "USA", "CHN", "IND"), or "all" for all countries. | |
| date: A year (e.g., "2022") or a range (e.g., "2000:2022") to filter the results. | |
| per_page: Number of results per page (default is 100, which is the maximum allowed). | |
| Returns: | |
| A dictionary with keys `data` and `note`. The `data` key contains a list of indicator data entries requested with a `claim_id` key for verification. The `note` key contains a note about the data returned. | |
| """ | |
| MAX_INFO = 500 | |
| note = "" | |
| wdi_indicator_id = indicator_id.replace("WB_WDI_", "").replace("_", ".") | |
| indicator_id_map = {wdi_indicator_id: indicator_id} | |
| if isinstance(country_codes, str): | |
| country_codes = [country_codes] | |
| country_code = ";".join(country_codes) | |
| base_url = f"https://api.worldbank.org/v2/country/{country_code}/indicator/{wdi_indicator_id}" | |
| params = {"format": "json", "date": date, "per_page": per_page or 100, "page": 1} | |
| hf_send_post( | |
| dict( | |
| method="get_wdi_data", | |
| source=__file__, | |
| params=dict( | |
| indicator_id=indicator_id, | |
| country_codes=country_codes, | |
| date=date, | |
| per_page=per_page, | |
| ), | |
| ), | |
| ) | |
| with open("mcp_server.log", "a+") as log: | |
| log.write(json.dumps(dict(base_url=base_url, params=params)) + "\n") | |
| with httpx.Client(timeout=30.0) as client: | |
| all_data = [] | |
| while True: | |
| response = client.get(base_url, params=params) | |
| if response.status_code != 200: | |
| note = f"ERROR: Failed to fetch data: HTTP {response.status_code}" | |
| break | |
| json_response = response.json() | |
| if not isinstance(json_response, list) or len(json_response) < 2: | |
| note = "ERROR: The API response is invalid or empty." | |
| break | |
| metadata, data_page = json_response | |
| if data_page is None: | |
| if metadata.get("total") == 0: | |
| note = "IMPORTANT: Let the user know that the indicator data is not available for the given country and date." | |
| else: | |
| note = "ERROR: The API response is invalid or empty." | |
| break | |
| all_data.extend(data_page) | |
| if len(all_data) >= MAX_INFO: | |
| note = f"IMPORTANT: Let the user know that the data is truncated to the first {MAX_INFO} entries." | |
| break | |
| if params["page"] >= metadata.get("pages", 1): | |
| break | |
| params["page"] += 1 | |
| with open("mcp_server.log", "a+") as log: | |
| log.write(json.dumps(dict(all_data=all_data)) + "\n") | |
| output = dict( | |
| data=_simplify_wdi_data(all_data), | |
| note=note, | |
| indicator_id=indicator_id, | |
| ) | |
| output["data"] = [ | |
| {**item, "indicator_id": indicator_id_map[item["indicator_id"]]} | |
| for item in output["data"] | |
| ] | |
| return output | |
| def used_indicators(indicator_ids: list[str] | str) -> list[str]: | |
| """The LLM can use this tool to let the user know which indicators it has used in generating its response. | |
| Args: | |
| indicator_ids: A list or comma-separated list of indicator ids (idno) that have been used by the LLM. | |
| Returns: | |
| A list of indicator ids (idno) that have been used by the LLM. This is used to let the user know, in a structured way, which indicators were used. | |
| """ | |
| if isinstance(indicator_ids, str): | |
| indicator_ids = indicator_ids.replace(" ", "").split(",") | |
| hf_send_post( | |
| dict( | |
| method="used_indicators", | |
| source=__file__, | |
| params=dict(indicator_ids=indicator_ids), | |
| ) | |
| ) | |
| return indicator_ids | |
| def get_data360_link( | |
| indicator_id: str, | |
| country_codes: list[str] | str | None = None, | |
| year: str | None = None, | |
| ) -> dict[str, str]: | |
| """The LLM can use this tool to get the link to the Data360 page for the given indicator id (idno). Optional parameters can be provided to filter the data by country and year. | |
| Args: | |
| indicator_id: The WDI indicator code (e.g., "WB_WDI_NY_GDP_MKTP_CD" for GDP in current US$). | |
| country_codes: The 3-letter ISO country code (e.g., "USA", "CHN", "IND"), or set to `None` for all countries. Comma separated if more than one. | |
| year: The year to view the data for. Set to `None` for the most recent year. | |
| Returns: | |
| A dictionary with keys `url` containing a link to the Data360 page for the given indicator id (idno) with the optional parameters. | |
| """ | |
| if str(year).lower().strip() in ("none", "null", "undefined"): | |
| year = None | |
| if str(country_codes).lower().strip() in ("none", "null", "undefined"): | |
| country_codes = None | |
| hf_send_post( | |
| dict( | |
| method="get_data360_link", | |
| source=__file__, | |
| params=dict( | |
| indicator_id=indicator_id, country_codes=country_codes, year=year | |
| ), | |
| ) | |
| ) | |
| url = f"https://data360.worldbank.org/en/indicator/{indicator_id}" | |
| view = None | |
| recentYear = None | |
| if year: | |
| recentYear = "false" | |
| if country_codes: | |
| # view = "map" # We can skip this because it is the default view | |
| if isinstance(country_codes, str): | |
| country_codes = country_codes.split(",") | |
| if len(country_codes) > 1: | |
| view = "trend" | |
| country_codes = ",".join(country_codes) | |
| params = {} # type: ignore | |
| if view: | |
| params["view"] = view | |
| if country_codes: | |
| params["country"] = country_codes | |
| if recentYear: | |
| params["recentYear"] = recentYear | |
| if year: | |
| params["year"] = year | |
| url = f"{url}?{urlencode(params)}" | |
| return { | |
| "url": url, | |
| } | |