chatbotQA / app.py
aidevhund's picture
Update app.py
76250b9 verified
from datetime import datetime
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from llama_parse import LlamaParse
from llama_index.llms.huggingface_api import HuggingFaceInferenceAPI
import os
from dotenv import load_dotenv
import gradio as gr
import markdowm as md
import base64
# Load environment variables
load_dotenv()
llm_models = {
"tiiuae/falcon-7b-instruct": "HundAI-7B-S",
"mistralai/Mixtral-8x7B-Instruct-v0.1": "Mixtral-8x7B",
"meta-llama/Meta-Llama-3-8B-Instruct": "Meta-Llama-8B",
"mistralai/Mistral-7B-Instruct-v0.2": "Mistral-7B",
}
embed_models = [
"BAAI/bge-small-en-v1.5", # 33.4M
"NeuML/pubmedbert-base-embeddings",
"BAAI/llm-embedder", # 109M
"BAAI/bge-large-en" # 335M
]
# Global variable for selected model
selected_llm_model_name = list(llm_models.keys())[0] # Default to the first model in the dictionary
vector_index = None
# Initialize the parser
parser = LlamaParse(api_key=os.getenv("LLAMA_INDEX_API"), result_type='markdown')
file_extractor = {
'.pdf': parser,
'.docx': parser,
'.txt': parser,
'.csv': parser,
'.xlsx': parser,
'.pptx': parser,
'.html': parser,
'.jpg': parser,
'.jpeg': parser,
'.png': parser,
'.webp': parser,
'.svg': parser,
}
# File processing function
def load_files(file_path: str, embed_model_name: str):
try:
document = SimpleDirectoryReader(input_files=[file_path], file_extractor=file_extractor).load_data()
embed_model = HuggingFaceEmbedding(model_name=embed_model_name)
vector_index = VectorStoreIndex.from_documents(document, embed_model=embed_model)
filename = os.path.basename(file_path)
return f"Ready to give response on {filename}"
except Exception as e:
return f"An error occurred: {e}"
# Function to handle the selected model from dropdown
def set_llm_model(selected_model):
global selected_llm_model_name
selected_llm_model_name = next(key for key, value in llm_models.items() if value == selected_model)
# Respond function
def respond(message, history):
try:
llm = HuggingFaceInferenceAPI(
model_name=selected_llm_model_name,
contextWindow=8192,
maxTokens=1024,
temperature=0.3,
topP=0.9,
frequencyPenalty=0.5,
presencePenalty=0.5,
token=os.getenv("TOKEN")
)
query_engine = vector_index.as_query_engine(llm=llm)
bot_message = query_engine.query(message)
return f"{llm_models[selected_llm_model_name]}:\n{str(bot_message)}"
except Exception as e:
if str(e) == "'NoneType' object has no attribute 'as_query_engine'":
return "Please upload a file."
return f"An error occurred: {e}"
# UI Setup
with gr.Blocks(theme='Hev832/Applio', css='footer {visibility: hidden}') as demo:
gr.Markdown("")
with gr.Tabs():
with gr.TabItem("Introduction"):
gr.Markdown(md.description)
with gr.TabItem("Chatbot"):
with gr.Accordion("IMPORTANT: READ ME FIRST", open=False):
guid = gr.Markdown(md.guide)
with gr.Row():
with gr.Column(scale=1):
file_input = gr.File(file_count="single", type='filepath', label="Upload document")
embed_model_dropdown = gr.Dropdown(embed_models, label="Select Embedding", interactive=True)
with gr.Row():
btn = gr.Button("Submit", variant='primary')
clear = gr.ClearButton()
output = gr.Text(label='Vector Index')
llm_model_dropdown = gr.Dropdown(list(llm_models.values()), label="Select LLM", interactive=True)
with gr.Column(scale=3):
gr.ChatInterface(
fn=respond,
chatbot=gr.Chatbot(height=500),
theme="soft",
textbox=gr.Textbox(placeholder="Ask me any questions on the uploaded document!", container=False)
)
llm_model_dropdown.change(fn=set_llm_model, inputs=llm_model_dropdown)
btn.click(fn=load_files, inputs=[file_input, embed_model_dropdown], outputs=output)
clear.click(lambda: [None] * 3, outputs=[file_input, embed_model_dropdown, output])
if __name__ == "__main__":
demo.launch()