|
import gradio as gr |
|
import os |
|
import openai |
|
|
|
|
|
openai.api_key = os.getenv("openai_key") |
|
|
|
|
|
|
|
prompt = '请你调用你能获取的所有的博物百科资源库,用小助手的口吻来回答问题,开头第一句是你好啊,好奇宝宝😊由于是面向青少年儿童,请务必做到内容有理有据语言风格有趣生动,如果答案涉及具体事物,请在相应的事物名字后面加上对应的表情emoji,比如大象🐘奶牛🐄风铃🎐花朵🏵️啤酒🍺等等。如果提问的问题不相关,你要友善提醒你回答范畴是博物百科知识。在回答完毕后,请务必提供相关的来源出处。结尾是固定格式询问有没有解答你的疑惑呢?欢迎继续提问😊在每次回答的最后,请用一条长的横线与前面的回答隔开,然后附上一句不超过20个字的科学名言警句,以激发青少年儿童的求知欲。' |
|
|
|
|
|
|
|
history = {} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def chat(p, qid, uid): |
|
|
|
global history |
|
if uid in history: |
|
msgs = history[uid] |
|
else: |
|
msgs = [] |
|
|
|
response = callapi(p, msgs) |
|
history[uid] = msgs + [[p, response]] |
|
return ["text", response] |
|
|
|
|
|
def callapi(p, msgs): |
|
if (len(msgs) > 8): |
|
msgs = msgs[-8:] |
|
|
|
data = [{"role":"system", "content":prompt}] |
|
for m in msgs: |
|
data = data + [ |
|
{"role":"user", "content":m[0]}, |
|
{"role":"assistant", "content":m[1]} |
|
] |
|
data = data + [{"role":"user", "content":p}] |
|
response = openai.ChatCompletion.create( |
|
model="gpt-3.5-turbo", |
|
messages= data |
|
) |
|
print(response) |
|
response = response["choices"][0]["message"]["content"] |
|
while response.startswith("\n"): |
|
response = response[1:] |
|
return response |
|
|
|
iface = gr.Interface(fn=chat, |
|
inputs=["text", "text", "text"], |
|
outputs=["text", "text"], |
|
description="""这是一个面向青少年儿童的博物百科全书问答助手,希望能够让你天马行空的想象力和好奇心得到满足! |
|
|
|
|
|
""") |
|
iface.launch() |