tejastake commited on
Commit
742ff21
·
verified ·
1 Parent(s): 20860e4

Upload 3 files

Browse files
Files changed (3) hide show
  1. Dockerfile +20 -0
  2. app.py +129 -0
  3. requirements.txt +6 -0
Dockerfile ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ FROM python:3.9
2
+
3
+ WORKDIR /code
4
+
5
+ COPY ./requirements.txt /code/requirements.txt
6
+
7
+ RUN pip install --no-cache-dir --upgrade -r /code/requirements.txt
8
+
9
+ RUN useradd -m -u 1000 user
10
+
11
+ USER user
12
+
13
+ ENV HOME=/home/user \
14
+ PATH=/home/user/.local/bin:$PATH
15
+
16
+ WORKDIR $HOME/app
17
+
18
+ COPY --chown=user . $HOME/app
19
+
20
+ CMD ["uvicorn", "app:app", "--host", "0.0.0.0", "--port", "7860"]
app.py ADDED
@@ -0,0 +1,129 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from fastapi import FastAPI, Query
2
+ import torch
3
+ import torch.nn.functional as F
4
+ from transformers import AutoTokenizer, AutoModel
5
+ import re
6
+ from fastapi import FastAPI, Depends
7
+ from fastapi_health import health
8
+ import logging
9
+ import sys
10
+ logger = logging.getLogger(__name__)
11
+
12
+ logging.basicConfig(
13
+ level=logging.getLevelName("INFO"),
14
+ handlers=[logging.StreamHandler(sys.stdout)],
15
+ format="%(asctime)s - %(name)s - %(levelname)s - %(message)s")
16
+ logging.info('Logging module started')
17
+
18
+ def get_session():
19
+ return True
20
+
21
+ def is_database_online(session: bool = Depends(get_session)):
22
+ return session
23
+
24
+ app = FastAPI()
25
+ app.add_api_route("/healthz", health([is_database_online]))
26
+
27
+
28
+ class EmbeddingModels:
29
+ def __init__(self):
30
+ device="cuda" if torch.cuda.is_available() else "cpu"
31
+ self.device = device
32
+ # print(f"Using device {self.device}")
33
+ self.text_model_ID = 'Alibaba-NLP/gte-large-en-v1.5'
34
+ self.text_model, self.text_tokenizer = self.get_text_model_info(self.text_model_ID)
35
+
36
+
37
+ def get_text_model_info(self, model_ID):
38
+ if self.device == 'cuda':
39
+ logging.info('Using Device CUDA')
40
+ tokenizer = AutoTokenizer.from_pretrained(model_ID)
41
+ model = AutoModel.from_pretrained(
42
+ model_ID,
43
+ trust_remote_code=True,
44
+ unpad_inputs=True,
45
+ use_memory_efficient_attention=True,
46
+ ).to(self.device)
47
+ logging.info('xfomrer based memory_efficient_attention enabled as device is cuda')
48
+ else:
49
+ logging.info('Using Device CPU')
50
+ tokenizer = AutoTokenizer.from_pretrained(model_ID)
51
+ model = AutoModel.from_pretrained(
52
+ model_ID,
53
+ trust_remote_code=True,
54
+ ).to(self.device)
55
+ logging.info(' memory_efficient_attention is not supported as device is cpu')
56
+
57
+ return model, tokenizer
58
+
59
+
60
+ def preprocessing_patent_data(self,text):
61
+ # Removing Common tags in patent
62
+ pattern0 = r'\b(SUBSTITUTE SHEET RULE 2 SUMMARY OF THE INVENTION|BRIEF DESCRIPTION OF PREFERRED EMBODIMENTS|BRIEF DESCRIPTION OF THE DRAWINGS/FIGURES|BEST MODE FOR CARRYING OUT THE INVENTION|BACKGROUND AND SUMMARY OF THE INVENTION|FIELD AND BACKGROUND OF THE INVENTION|BACKGROUND OF THE PRESENT INVENTION|FIELD AND BACKGROUND OF INVENTION|STAND DER TECHNIK- BACKGROUND ART|BRIEF DESCRIPTION OF THE DRAWINGS|DESCRIPTION OF THE RELATED ART|BRIEF SUMMARY OF THE INVENTION|UTILITY MODEL CLAIMS A CONTENT|DESCRIPTION OF BACKGROUND ART|BRIEF DESCRIPTION OF DRAWINGS|BACKGROUND OF THE INVENTION|BACKGROUND TO THE INVENTION|TÉCNICA ANTERIOR- PRIOR ART|DISCLOSURE OF THE INVENTION|BRIEF SUMMARY OF INVENTION|BACKGROUND OF RELATED ART|SUMMARY OF THE DISCLOSURE|SUMMARY OF THE INVENTIONS|SUMMARY OF THE INVENTION|OBJECTS OF THE INVENTION|THE CONTENT OF INVENTION|DISCLOSURE OF INVENTION|Disclosure of Invention|Complete Specification|RELATED BACKGROUND ART|BACKGROUND INFORMATION|BACKGROUND TECHNOLOGY|DETAILED DESCRIPTION|SUMMARY OF INVENTION|DETAILED DESCRIPTION|PROBLEM TO BE SOLVED|EFFECT OF INVENTION|WHAT IS CLAIMED IS|What is claimed is|What is Claim is|SUBSTITUTE SHEET|SELECTED DRAWING|BACK GROUND ART|BACKGROUND ART|Background Art|JPO&INPIT|CONSTITUTION|DEFINITIONS|Related Art|BACKGROUND|JPO&INPIT|JPO&NCIPI|COPYRIGHT|SOLUTION|SUMMARY)\b'
63
+ text = re.sub(pattern0, '[SEP]', text, flags=re.IGNORECASE)
64
+ text = ' '.join(text.split())
65
+ # Removing all tags between Heading to /Heading and id=
66
+ regex = r'<\s*heading[^>]*>(.*?)<\s*/\s*heading>|<[^<]+>|id=\"p-\d+\"|:'
67
+ result = re.sub(regex, '[SEP]', text, flags=re.IGNORECASE)
68
+ # find_formula_names from pat text to exclude it from below logic regex
69
+ chemical_list = []
70
+ pattern1 = r'\b((?:(?:H|He|Li|Be|B|C|N|O|F|Ne|Na|Mg|Al|Si|P|S|Cl|Ar|K|Ca|Sc|Ti|V|Cr|Mn|Fe|Co|Ni|Cu|Zn|Ga|Ge|As|Se|Br|Kr|Rb|Sr|Y|Zr|Nb|Mo|Tc|Ru|Rh|Pd|Ag|Cd|In|Sn|Sb|Te|I|Xe|Cs|Ba|La|Hf|Ta|W|Re|Os|Ir|Pt|Au|Hg|Tl|Pb|Bi|Po|At|Rn|Fr|Ra|Ac|Rf|Db|Sg|Bh|Hs|Mt|Ds|Rg|Cn|Nh|Fl|Mc|Lv|Ts|Og|Ce|Pr|Nd|Pm|Sm|Eu|Gd|Tb|Dy|Ho|Er|Tm|Yb|Lu|Th|Pa|U|Np|Pu|Am|Cm|Bk|Cf|Es|Fm|Md|No|Lr)\d*)+)\b'
71
+
72
+ formula_names = re.findall(pattern1, result)
73
+ for formula in formula_names:
74
+ if len(formula)>=2:
75
+ chemical_list.append(formula)
76
+ # print("chemical_list:", chemical_list)
77
+
78
+ # Remove numbers and alphanum inside brackets excluding chemical forms
79
+ pattern2 = r"\((?![A-Za-z]+\))[\w\d\s,-]+\)|\([A-Za-z]\)"
80
+ def keep_strings(text):
81
+ matched = text.group(0)
82
+ if any(item in matched for item in chemical_list):
83
+ return matched
84
+ return ' '
85
+ cleaned_text = re.sub(pattern2, keep_strings, result)
86
+ cleaned_text = ' '.join(cleaned_text.split())
87
+ cleaned_text= re.sub("(\[SEP\]+\s*)+", ' ', cleaned_text, flags=re.IGNORECASE)
88
+ # below new logic to remove chemical compounds (eg.chemical- polymerizable compounds)
89
+ p_text2=re.sub('[\—\-\═\=]', ' ', cleaned_text)
90
+ pattern1 = r'\b((?:(?:H|He|Li|Be|B|C|N|O|F|Ne|Na|Mg|Al|Si|P|S|Cl|Ar|K|Ca|Sc|Ti|V|Cr|Mn|Fe|Co|Ni|Cu|Zn|Ga|Ge|As|Se|Br|Kr|Rb|Sr|Y|Zr|Nb|Mo|Tc|Ru|Rh|Pd|Ag|Cd|In|Sn|Sb|Te|I|Xe|Cs|Ba|La|Hf|Ta|W|Re|Os|Ir|Pt|Au|Hg|Tl|Pb|Bi|Po|At|Rn|Fr|Ra|Ac|Rf|Db|Sg|Bh|Hs|Mt|Ds|Rg|Cn|Nh|Fl|Mc|Lv|Ts|Og|Ce|Pr|Nd|Pm|Sm|Eu|Gd|Tb|Dy|Ho|Er|Tm|Yb|Lu|Th|Pa|U|Np|Pu|Am|Cm|Bk|Cf|Es|Fm|Md|No|Lr)\d*)+)\b'
91
+ cleaned_text = re.sub(pattern1, "", p_text2)
92
+ cleaned_text = re.sub(' ,+|, +', ' ', cleaned_text)
93
+ cleaned_text = re.sub(' +', ' ', cleaned_text)
94
+ cleaned_text = re.sub('\.+', '.', cleaned_text)
95
+ cleaned_text = re.sub('[0-9] [0-9] +', ' ', cleaned_text)
96
+ cleaned_text = re.sub('( )', ' ', cleaned_text)
97
+ cleaned_text=cleaned_text.strip()
98
+ return cleaned_text
99
+
100
+ def get_text_embedding(self, text):
101
+ input_texts = []
102
+ text = self.preprocessing_patent_data(text)
103
+ logging.info('Input Text Processed')
104
+ input_texts.append(text)
105
+ batch_dict = self.text_tokenizer (input_texts, max_length=1024, padding=True, truncation=True, return_tensors='pt').to(self.device)
106
+ if self.device == 'cuda':
107
+ with torch.autocast(device_type="cuda", dtype=torch.float16):
108
+ with torch.inference_mode():
109
+ outputs = self.text_model(**batch_dict)
110
+ else:
111
+ with torch.inference_mode():
112
+ outputs = self.text_model(**batch_dict)
113
+ embeddings = outputs.last_hidden_state[:, 0]
114
+ embeddings = F.normalize(embeddings, p=2, dim=1)
115
+ logging.info('Embd Normalized')
116
+ values = embeddings[0].tolist()
117
+ logging.info('Embd Created')
118
+ return values
119
+
120
+ model = EmbeddingModels()
121
+ logging.info('Model Loaded!')
122
+
123
+ @app.post("/embed-text-gb/")
124
+ async def embed_text(text: str = Query(...)):
125
+ try:
126
+ embeddings = model.get_text_embedding(text)
127
+ return embeddings
128
+ except Exception as e:
129
+ logging.info(f'Error: {e}')
requirements.txt ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ fastapi
2
+ uvicorn
3
+ pillow
4
+ torch
5
+ transformers
6
+ fastapi_health