File size: 9,839 Bytes
bce439c
7f98410
 
 
0e14842
 
bce439c
0e14842
bce439c
fda85af
0e14842
18b5a12
 
7f98410
f3cae17
7f98410
0e14842
bce439c
689f970
0e14842
bce439c
 
 
0e14842
 
 
 
f3cae17
7f98410
 
 
 
 
 
 
 
f3cae17
 
 
 
 
 
7f98410
 
 
 
 
 
 
 
 
 
 
 
0e14842
f3cae17
 
 
 
 
 
 
 
 
 
 
bce439c
 
 
 
 
 
 
 
 
 
 
 
0e14842
 
fda85af
 
bce439c
 
 
 
 
 
 
fda85af
bce439c
7f98410
18b5a12
 
7f98410
 
 
0e14842
 
3cd281f
 
 
 
 
 
 
 
 
 
 
0e14842
 
bce439c
bf65a8f
 
0e14842
 
 
18b5a12
66d5f35
9d997d8
 
7f98410
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e14842
bce439c
7f98410
18b5a12
7f98410
 
 
 
 
18b5a12
 
a2bd23b
18b5a12
fda85af
7f98410
 
 
 
18b5a12
7f98410
 
 
 
bce439c
18b5a12
 
 
 
 
 
 
 
 
 
0e14842
 
bce439c
 
 
 
 
 
 
 
 
fda85af
bce439c
7f98410
ba0cd8f
0e14842
fda85af
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
import random
import os
import uuid
from datetime import datetime
import gradio as gr
import numpy as np
import spaces
import torch
from diffusers import DiffusionPipeline
from PIL import Image

# Create permanent storage directory
SAVE_DIR = "saved_images"  # Gradio will handle the persistence
if not os.path.exists(SAVE_DIR):
    os.makedirs(SAVE_DIR, exist_ok=True)

device = "cuda" if torch.cuda.is_available() else "cpu"
repo_id = "black-forest-labs/FLUX.1-dev"
adapter_id = "flux-lora-korea-palace"

pipeline = DiffusionPipeline.from_pretrained(repo_id, torch_dtype=torch.bfloat16)
pipeline.load_lora_weights(adapter_id)
pipeline = pipeline.to(device)

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024

def save_generated_image(image, prompt):
    # Generate unique filename with timestamp
    timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
    unique_id = str(uuid.uuid4())[:8]
    filename = f"{timestamp}_{unique_id}.png"
    filepath = os.path.join(SAVE_DIR, filename)
    
    # Save the image
    image.save(filepath)
    
    # Save metadata
    metadata_file = os.path.join(SAVE_DIR, "metadata.txt")
    with open(metadata_file, "a", encoding="utf-8") as f:
        f.write(f"{filename}|{prompt}|{timestamp}\n")
    
    return filepath

def load_generated_images():
    if not os.path.exists(SAVE_DIR):
        return []
    
    # Load all images from the directory
    image_files = [os.path.join(SAVE_DIR, f) for f in os.listdir(SAVE_DIR) 
                  if f.endswith(('.png', '.jpg', '.jpeg', '.webp'))]
    # Sort by creation time (newest first)
    image_files.sort(key=lambda x: os.path.getctime(x), reverse=True)
    return image_files

def load_predefined_images():
    predefined_images = [
        "assets/cm1.webp",
        "assets/cm2.webp",
        "assets/cm3.webp",
        "assets/cm4.webp",
        "assets/cm5.webp",
        "assets/cm6.webp",
    ]
    return predefined_images

@spaces.GPU(duration=120)
def inference(
    prompt: str,
    seed: int,
    randomize_seed: bool,
    width: int,
    height: int,
    guidance_scale: float,
    num_inference_steps: int,
    lora_scale: float,
    progress: gr.Progress = gr.Progress(track_tqdm=True),
):
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    generator = torch.Generator(device=device).manual_seed(seed)
    
    image = pipeline(
        prompt=prompt,
        guidance_scale=guidance_scale,
        num_inference_steps=num_inference_steps,
        width=width,
        height=height,
        generator=generator,
        joint_attention_kwargs={"scale": lora_scale},
    ).images[0]
    
    # Save the generated image
    filepath = save_generated_image(image, prompt)
    
    # Return the image, seed, and updated gallery
    return image, seed, load_generated_images()

examples = [
    "Geunjeongjeon Hall of Gyeongbokgung Palace in the crisp winter morning, where fresh snow blankets the vast courtyard. The magnificent throne hall stands proud with its vibrant dancheong colors contrasting against the pure white snow. Intricate dragon carvings along the massive red pillars seem to come alive in the golden morning light, while the multi-tiered upturned eaves create dramatic shadows on the pristine snow below. [trigger]",
    
    "Geunjeongjeon Hall of Gyeongbokgung Palace during a spring dawn, when cherry blossoms frame the grand structure. The first light of day illuminates the ornate throne hall's double-tiered stone platform, while delicate pink petals drift gracefully across the courtyard. The meticulously painted wooden columns and beams showcase the rich vermillion and emerald dancheong patterns, their colors especially vivid against the soft morning sky. [trigger]",
    
    "Geunjeongjeon Hall of Gyeongbokgung Palace at summer dusk, as the setting sun bathes the royal throne hall in warm amber light. The imposing structure's curved roof tiles gleam with a golden sheen, while the intricate ceiling designs cast intricate shadows across the wooden floors. Stone guardians stand sentinel at the base of the grand staircase, their forms dramatic against the deepening purple sky. [trigger]",
    
    "Geunjeongjeon Hall of Gyeongbokgung Palace beneath autumn rain, where water droplets trace elegant paths down the carved dragon pillars. The wet stone steps reflect the deep reds and greens of the painted rafters above, while gray clouds create a dramatic backdrop for the hall's distinctive silhouette. Bronze wind chimes at the corners of the sweeping roof sing softly in the gentle rain. [trigger]",
    
    "Geunjeongjeon Hall of Gyeongbokgung Palace under a full moon, its majestic form illuminated by silvery moonlight. The throne hall's imposing structure casts long shadows across the empty courtyard, while moonbeams highlight the intricate details of the painted ceremonies beneath the eaves. The carved stone foundations seem to glow with an ethereal light, creating a mystical atmosphere worthy of this royal sanctuary. [trigger]",
    
    "Geunjeongjeon Hall of Gyeongbokgung Palace during a traditional ceremony, where the morning sun streams through the towering red pillars. Incense smoke curls gracefully around the ornately decorated beams, while the vast courtyard comes alive with the colorful hanbok of court officials. The ancient throne platform stands dignified beneath the soaring roof, its carved details emphasized by shafts of golden light piercing through the traditional wooden lattice windows. [trigger]"
]

css = """
footer {
    visibility: hidden;
}
"""

with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange", css=css, analytics_enabled=False) as demo:
    gr.HTML('<div class="title"> Claude Monet STUDIO </div>')
    gr.HTML('<div class="title">😄Image to Video Explore: <a href="https://huggingface.co/spaces/ginigen/theater" target="_blank">https://huggingface.co/spaces/ginigen/theater</a></div>')

    with gr.Tabs() as tabs:
        with gr.Tab("Generation"):
            with gr.Column(elem_id="col-container"):
                with gr.Row():
                    prompt = gr.Text(
                        label="Prompt",
                        show_label=False,
                        max_lines=1,
                        placeholder="Enter your prompt",
                        container=False,
                    )
                    run_button = gr.Button("Run", scale=0)

                result = gr.Image(label="Result", show_label=False)

                with gr.Accordion("Advanced Settings", open=False):
                    seed = gr.Slider(
                        label="Seed",
                        minimum=0,
                        maximum=MAX_SEED,
                        step=1,
                        value=42,
                    )
                    randomize_seed = gr.Checkbox(label="Randomize seed", value=True)

                    with gr.Row():
                        width = gr.Slider(
                            label="Width",
                            minimum=256,
                            maximum=MAX_IMAGE_SIZE,
                            step=32,
                            value=1024,
                        )
                        height = gr.Slider(
                            label="Height",
                            minimum=256,
                            maximum=MAX_IMAGE_SIZE,
                            step=32,
                            value=768,
                        )

                    with gr.Row():
                        guidance_scale = gr.Slider(
                            label="Guidance scale",
                            minimum=0.0,
                            maximum=10.0,
                            step=0.1,
                            value=3.5,
                        )
                        num_inference_steps = gr.Slider(
                            label="Number of inference steps",
                            minimum=1,
                            maximum=50,
                            step=1,
                            value=30,
                        )
                        lora_scale = gr.Slider(
                            label="LoRA scale",
                            minimum=0.0,
                            maximum=1.0,
                            step=0.1,
                            value=1.0,
                        )

                gr.Examples(
                    examples=examples,
                    inputs=[prompt],
                    outputs=[result, seed],
                )

        with gr.Tab("Gallery"):
            gallery_header = gr.Markdown("### Generated Images Gallery")
            generated_gallery = gr.Gallery(
                label="Generated Images",
                columns=6,
                show_label=False,
                value=load_generated_images(),
                elem_id="generated_gallery",
                height="auto"
            )
            refresh_btn = gr.Button("🔄 Refresh Gallery")

    # Add sample gallery section at the bottom
    gr.Markdown("### Claude Monet Style Examples")
    predefined_gallery = gr.Gallery(
        label="Sample Images", 
        columns=3,
        rows=2,
        show_label=False, 
        value=load_predefined_images()
    )

    # Event handlers
    def refresh_gallery():
        return load_generated_images()

    refresh_btn.click(
        fn=refresh_gallery,
        inputs=None,
        outputs=generated_gallery,
    )

    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn=inference,
        inputs=[
            prompt,
            seed,
            randomize_seed,
            width,
            height,
            guidance_scale,
            num_inference_steps,
            lora_scale,
        ],
        outputs=[result, seed, generated_gallery],
    )

demo.queue()
demo.launch()