rag / app.py
aiqtech's picture
Update app.py
a78af19 verified
"""
โšก Speed-Optimized Multi-Agent RAG System for Complex Questions
๋ณ‘๋ ฌ ์ฒ˜๋ฆฌ, ๋™์  ํŒŒ์ดํ”„๋ผ์ธ์œผ๋กœ ๋ณต์žกํ•œ ์งˆ๋ฌธ๋„ ๋น ๋ฅด๊ฒŒ ์ฒ˜๋ฆฌ
Enhanced with multi-language support and improved error handling
(์บ์‹ฑ ๊ธฐ๋Šฅ ์ œ๊ฑฐ ๋ฒ„์ „ + ๋ชจ๋ธ ์ •๋ณด ๋ณดํ˜ธ)
"""
import os
import json
import time
import asyncio
import hashlib
import re
import sys
from typing import Optional, List, Dict, Any, Tuple, Generator, AsyncGenerator
from datetime import datetime, timedelta
from enum import Enum
from collections import deque
import threading
import queue
from concurrent.futures import ThreadPoolExecutor, as_completed
import aiohttp
import requests
import gradio as gr
from pydantic import BaseModel, Field
from dotenv import load_dotenv
# ํ™˜๊ฒฝ๋ณ€์ˆ˜ ๋กœ๋“œ
load_dotenv()
# ============================================================================
# ๋ฐ์ดํ„ฐ ๋ชจ๋ธ ์ •์˜
# ============================================================================
class AgentRole(Enum):
"""์—์ด์ „ํŠธ ์—ญํ•  ์ •์˜"""
SUPERVISOR = "supervisor"
CREATIVE = "creative"
CRITIC = "critic"
FINALIZER = "finalizer"
class ExecutionMode(Enum):
"""์‹คํ–‰ ๋ชจ๋“œ ์ •์˜"""
PARALLEL = "parallel" # ๋ณ‘๋ ฌ ์ฒ˜๋ฆฌ
SEQUENTIAL = "sequential" # ์ˆœ์ฐจ ์ฒ˜๋ฆฌ
HYBRID = "hybrid" # ํ•˜์ด๋ธŒ๋ฆฌ๋“œ
class Message(BaseModel):
role: str
content: str
timestamp: Optional[datetime] = None
class AgentResponse(BaseModel):
role: AgentRole
content: str
processing_time: float
metadata: Optional[Dict] = None
# ============================================================================
# ์–ธ์–ด ๊ฐ์ง€ ์œ ํ‹ธ๋ฆฌํ‹ฐ
# ============================================================================
class LanguageDetector:
"""์–ธ์–ด ๊ฐ์ง€ ๋ฐ ์ฒ˜๋ฆฌ ์œ ํ‹ธ๋ฆฌํ‹ฐ"""
@staticmethod
def detect_language(text: str) -> str:
"""๊ฐ„๋‹จํ•œ ์–ธ์–ด ๊ฐ์ง€"""
import re
# ํ•œ๊ธ€ ํŒจํ„ด
korean_pattern = re.compile('[๊ฐ€-ํžฃ]+')
# ์ผ๋ณธ์–ด ํŒจํ„ด (ํžˆ๋ผ๊ฐ€๋‚˜, ๊ฐ€ํƒ€์นด๋‚˜)
japanese_pattern = re.compile('[ใ-ใ‚“]+|[ใ‚ก-ใƒดใƒผ]+')
# ์ค‘๊ตญ์–ด ํŒจํ„ด
chinese_pattern = re.compile('[\u4e00-\u9fff]+')
# ํ…์ŠคํŠธ ๊ธธ์ด ๋Œ€๋น„ ๊ฐ ์–ธ์–ด ๋ฌธ์ž ๋น„์œจ ๊ณ„์‚ฐ
text_length = len(text)
if text_length == 0:
return 'en'
korean_chars = len(korean_pattern.findall(text))
japanese_chars = len(japanese_pattern.findall(text))
chinese_chars = len(chinese_pattern.findall(text))
# ํ•œ๊ธ€ ๋น„์œจ์ด 10% ์ด์ƒ์ด๋ฉด ํ•œ๊ตญ์–ด
if korean_chars > 0 and (korean_chars / text_length > 0.1):
return 'ko'
# ์ผ๋ณธ์–ด ๋ฌธ์ž๊ฐ€ ์žˆ์œผ๋ฉด ์ผ๋ณธ์–ด
elif japanese_chars > 0:
return 'ja'
# ์ค‘๊ตญ์–ด ๋ฌธ์ž๊ฐ€ ์žˆ์œผ๋ฉด ์ค‘๊ตญ์–ด
elif chinese_chars > 0:
return 'zh'
else:
return 'en'
# ============================================================================
# ๋ณ‘๋ ฌ ์ฒ˜๋ฆฌ ์ตœ์ ํ™” Brave Search (๊ฐœ์„ ๋จ)
# ============================================================================
class AsyncBraveSearch:
"""๋น„๋™๊ธฐ Brave ๊ฒ€์ƒ‰ ํด๋ผ์ด์–ธํŠธ with retry logic"""
def __init__(self, api_key: Optional[str] = None):
self.api_key = api_key or os.getenv("BRAVE_SEARCH_API_KEY")
self.base_url = "https://api.search.brave.com/res/v1/web/search"
self.max_retries = 3
async def search_async(self, query: str, count: int = 5, lang: str = 'ko') -> List[Dict]:
"""๋น„๋™๊ธฐ ๊ฒ€์ƒ‰ with retry"""
if not self.api_key:
return []
headers = {
"Accept": "application/json",
"X-Subscription-Token": self.api_key
}
# ์–ธ์–ด๋ณ„ ํŒŒ๋ผ๋ฏธํ„ฐ ์„ค์ •
lang_params = {
'ko': {"search_lang": "ko", "country": "KR"},
'en': {"search_lang": "en", "country": "US"},
'ja': {"search_lang": "ja", "country": "JP"},
'zh': {"search_lang": "zh", "country": "CN"}
}
params = {
"q": query,
"count": count,
"text_decorations": False,
**lang_params.get(lang, lang_params['en'])
}
for attempt in range(self.max_retries):
try:
async with aiohttp.ClientSession() as session:
async with session.get(
self.base_url,
headers=headers,
params=params,
timeout=aiohttp.ClientTimeout(total=5)
) as response:
if response.status == 200:
data = await response.json()
results = []
if "web" in data and "results" in data["web"]:
for item in data["web"]["results"][:count]:
results.append({
"title": item.get("title", ""),
"url": item.get("url", ""),
"description": item.get("description", ""),
"age": item.get("age", "")
})
return results
elif response.status == 429: # Rate limit
await asyncio.sleep(2 ** attempt)
continue
except aiohttp.ClientError as e:
if attempt < self.max_retries - 1:
await asyncio.sleep(2 ** attempt) # Exponential backoff
continue
except Exception:
pass
return []
async def batch_search(self, queries: List[str], lang: str = 'ko') -> List[List[Dict]]:
"""์—ฌ๋Ÿฌ ๊ฒ€์ƒ‰์„ ๋ฐฐ์น˜๋กœ ์ฒ˜๋ฆฌ"""
tasks = [self.search_async(q, lang=lang) for q in queries]
results = await asyncio.gather(*tasks, return_exceptions=True)
# ์˜ˆ์™ธ ์ฒ˜๋ฆฌ
return [r if not isinstance(r, Exception) else [] for r in results]
# ============================================================================
# ์ตœ์ ํ™”๋œ Fireworks ํด๋ผ์ด์–ธํŠธ (๊ฐœ์„ ๋จ)
# ============================================================================
class OptimizedFireworksClient:
"""์ตœ์ ํ™”๋œ LLM ํด๋ผ์ด์–ธํŠธ with language support"""
def __init__(self, api_key: Optional[str] = None):
self.api_key = api_key or os.getenv("FIREWORKS_API_KEY")
if not self.api_key:
raise ValueError("FIREWORKS_API_KEY is required!")
self.base_url = "https://api.fireworks.ai/inference/v1/chat/completions"
self.headers = {
"Accept": "application/json",
"Content-Type": "application/json",
"Authorization": f"Bearer {self.api_key}"
}
# ํ•ญ์ƒ ์ตœ๊ณ  ์„ฑ๋Šฅ ๋ชจ๋ธ ์‚ฌ์šฉ (๋ณต์žกํ•œ ์งˆ๋ฌธ ์ „์ œ)
self.model = "accounts/fireworks/models/qwen3-235b-a22b-instruct-2507"
self.max_retries = 3
def compress_prompt(self, text: str, max_length: int = 2000) -> str:
"""ํ”„๋กฌํ”„ํŠธ ์••์ถ•"""
if len(text) <= max_length:
return text
# ์ค‘์š”ํ•œ ๋ถ€๋ถ„ ์šฐ์„ ์ˆœ์œ„๋กœ ์ž๋ฅด๊ธฐ
sentences = text.split('.')
compressed = []
current_length = 0
for sentence in sentences:
if current_length + len(sentence) > max_length:
break
compressed.append(sentence)
current_length += len(sentence)
return '.'.join(compressed)
async def chat_stream_async(
self,
messages: List[Dict],
**kwargs
) -> AsyncGenerator[str, None]:
"""๋น„๋™๊ธฐ ์ŠคํŠธ๋ฆฌ๋ฐ ๋Œ€ํ™” with retry"""
payload = {
"model": self.model,
"messages": messages,
"max_tokens": kwargs.get("max_tokens", 2000),
"temperature": kwargs.get("temperature", 0.7),
"top_p": kwargs.get("top_p", 1.0),
"top_k": kwargs.get("top_k", 40),
"stream": True
}
for attempt in range(self.max_retries):
try:
async with aiohttp.ClientSession() as session:
async with session.post(
self.base_url,
headers={**self.headers, "Accept": "text/event-stream"},
json=payload,
timeout=aiohttp.ClientTimeout(total=30)
) as response:
async for line in response.content:
line_str = line.decode('utf-8').strip()
if line_str.startswith("data: "):
data_str = line_str[6:]
if data_str == "[DONE]":
break
try:
data = json.loads(data_str)
if "choices" in data and len(data["choices"]) > 0:
delta = data["choices"][0].get("delta", {})
if "content" in delta:
yield delta["content"]
except json.JSONDecodeError:
continue
return # Success
except aiohttp.ClientError as e:
if attempt < self.max_retries - 1:
await asyncio.sleep(2 ** attempt)
continue
else:
yield f"Error after {self.max_retries} attempts: {str(e)}"
except Exception as e:
yield f"Unexpected error: {str(e)}"
break
# ============================================================================
# ๊ฒฝ๋Ÿ‰ํ™”๋œ ์ถ”๋ก  ์ฒด์ธ (๋‹ค๊ตญ์–ด ์ง€์›)
# ============================================================================
class LightweightReasoningChain:
"""๋น ๋ฅธ ์ถ”๋ก ์„ ์œ„ํ•œ ํ…œํ”Œ๋ฆฟ ๊ธฐ๋ฐ˜ ์‹œ์Šคํ…œ"""
def __init__(self):
self.templates = {
"ko": {
"problem_solving": {
"steps": ["๋ฌธ์ œ ๋ถ„ํ•ด", "ํ•ต์‹ฌ ์š”์ธ", "ํ•ด๊ฒฐ ๋ฐฉ์•ˆ", "๊ตฌํ˜„ ์ „๋žต"],
"prompt": "์ฒด๊ณ„์ ์œผ๋กœ ๋‹จ๊ณ„๋ณ„๋กœ ๋ถ„์„ํ•˜๊ณ  ํ•ด๊ฒฐ์ฑ…์„ ์ œ์‹œํ•˜์„ธ์š”."
},
"creative_thinking": {
"steps": ["๊ธฐ์กด ์ ‘๊ทผ", "์ฐฝ์˜์  ๋Œ€์•ˆ", "ํ˜์‹  ํฌ์ธํŠธ", "์‹คํ–‰ ๋ฐฉ๋ฒ•"],
"prompt": "๊ธฐ์กด ๋ฐฉ์‹์„ ๋„˜์–ด์„  ์ฐฝ์˜์ ์ด๊ณ  ํ˜์‹ ์ ์ธ ์ ‘๊ทผ์„ ์ œ์‹œํ•˜์„ธ์š”."
},
"critical_analysis": {
"steps": ["ํ˜„ํ™ฉ ํ‰๊ฐ€", "๊ฐ•์ /์•ฝ์ ", "๊ธฐํšŒ/์œ„ํ˜‘", "๊ฐœ์„  ๋ฐฉํ–ฅ"],
"prompt": "๋น„ํŒ์  ๊ด€์ ์—์„œ ์ฒ ์ €ํžˆ ๋ถ„์„ํ•˜๊ณ  ๊ฐœ์„ ์ ์„ ๋„์ถœํ•˜์„ธ์š”."
}
},
"en": {
"problem_solving": {
"steps": ["Problem Breakdown", "Key Factors", "Solutions", "Implementation Strategy"],
"prompt": "Systematically analyze step by step and provide solutions."
},
"creative_thinking": {
"steps": ["Traditional Approach", "Creative Alternatives", "Innovation Points", "Execution Method"],
"prompt": "Provide creative and innovative approaches beyond conventional methods."
},
"critical_analysis": {
"steps": ["Current Assessment", "Strengths/Weaknesses", "Opportunities/Threats", "Improvement Direction"],
"prompt": "Thoroughly analyze from a critical perspective and derive improvements."
}
}
}
def get_reasoning_structure(self, query_type: str, lang: str = 'ko') -> Dict:
"""์ฟผ๋ฆฌ ์œ ํ˜•์— ๋งž๋Š” ์ถ”๋ก  ๊ตฌ์กฐ ๋ฐ˜ํ™˜"""
lang_templates = self.templates.get(lang, self.templates['en'])
return lang_templates.get(query_type, lang_templates["problem_solving"])
def get_reasoning_pattern(self, query: str, lang: str = 'ko') -> Optional[Dict]:
"""์ฟผ๋ฆฌ์— ์ ํ•ฉํ•œ ์ถ”๋ก  ํŒจํ„ด ๋ฐ˜ํ™˜"""
query_lower = query.lower()
# ์–ธ์–ด๋ณ„ ํ‚ค์›Œ๋“œ ๋งคํ•‘
pattern_keywords = {
'ko': {
'problem_solving': ['ํ•ด๊ฒฐ', '๋ฐฉ๋ฒ•', '์ „๋žต', '๊ณ„ํš'],
'creative_thinking': ['์ฐฝ์˜์ ', 'ํ˜์‹ ์ ', '์ƒˆ๋กœ์šด', '์•„์ด๋””์–ด'],
'critical_analysis': ['๋ถ„์„', 'ํ‰๊ฐ€', '๋น„๊ต', '์˜ํ–ฅ']
},
'en': {
'problem_solving': ['solve', 'solution', 'strategy', 'plan'],
'creative_thinking': ['creative', 'innovative', 'novel', 'idea'],
'critical_analysis': ['analyze', 'evaluate', 'compare', 'impact']
}
}
keywords = pattern_keywords.get(lang, pattern_keywords['en'])
for pattern_type, words in keywords.items():
if any(word in query_lower for word in words):
return self.get_reasoning_structure(pattern_type, lang)
return self.get_reasoning_structure('problem_solving', lang)
# ============================================================================
# ์กฐ๊ธฐ ์ข…๋ฃŒ ๋ฉ”์ปค๋‹ˆ์ฆ˜ (๊ฐœ์„ ๋จ)
# ============================================================================
class QualityChecker:
"""ํ’ˆ์งˆ ์ฒดํฌ ๋ฐ ์กฐ๊ธฐ ์ข…๋ฃŒ ๊ฒฐ์ •"""
def __init__(self, min_quality: float = 0.75):
self.min_quality = min_quality
self.quality_metrics = {
"length": 0.2,
"structure": 0.3,
"completeness": 0.3,
"clarity": 0.2
}
def evaluate_response(self, response: str, query: str, lang: str = 'ko') -> Tuple[float, bool]:
"""์‘๋‹ต ํ’ˆ์งˆ ํ‰๊ฐ€ (์–ธ์–ด๋ณ„)"""
scores = {}
# ์–ธ์–ด๋ณ„ ์ตœ์†Œ ๊ธธ์ด ๊ธฐ์ค€
min_length = {'ko': 500, 'en': 400, 'ja': 400, 'zh': 300}
target_length = min_length.get(lang, 400)
# ๊ธธ์ด ํ‰๊ฐ€
scores["length"] = min(len(response) / target_length, 1.0)
# ๊ตฌ์กฐ ํ‰๊ฐ€ (์–ธ์–ด๋ณ„ ๋งˆ์ปค)
structure_markers = {
'ko': ["1.", "2.", "โ€ข", "-", "์ฒซ์งธ", "๋‘˜์งธ", "๊ฒฐ๋ก ", "์š”์•ฝ"],
'en': ["1.", "2.", "โ€ข", "-", "First", "Second", "Conclusion", "Summary"],
'ja': ["1.", "2.", "โ€ข", "-", "็ฌฌไธ€", "็ฌฌไบŒ", "็ต่ซ–", "่ฆ็ด„"],
'zh': ["1.", "2.", "โ€ข", "-", "็ฌฌไธ€", "็ฌฌไบŒ", "็ป“่ฎบ", "ๆ€ป็ป“"]
}
markers = structure_markers.get(lang, structure_markers['en'])
scores["structure"] = sum(1 for m in markers if m in response) / len(markers)
# ์™„์ „์„ฑ ํ‰๊ฐ€ (์ฟผ๋ฆฌ ํ‚ค์›Œ๋“œ ํฌํ•จ ์—ฌ๋ถ€)
query_words = set(query.split())
response_words = set(response.split())
scores["completeness"] = len(query_words & response_words) / max(len(query_words), 1)
# ๋ช…ํ™•์„ฑ ํ‰๊ฐ€ (๋ฌธ์žฅ ๊ตฌ์กฐ)
sentence_delimiters = {
'ko': '.',
'en': '.',
'ja': 'ใ€‚',
'zh': 'ใ€‚'
}
delimiter = sentence_delimiters.get(lang, '.')
sentences = response.split(delimiter)
avg_sentence_length = sum(len(s.split()) for s in sentences) / max(len(sentences), 1)
scores["clarity"] = min(avg_sentence_length / 20, 1.0)
# ๊ฐ€์ค‘ ํ‰๊ท  ๊ณ„์‚ฐ
total_score = sum(
scores[metric] * weight
for metric, weight in self.quality_metrics.items()
)
should_continue = total_score < self.min_quality
return total_score, should_continue
# ============================================================================
# ์ŠคํŠธ๋ฆฌ๋ฐ ์ตœ์ ํ™” (๊ฐœ์„ ๋จ)
# ============================================================================
class OptimizedStreaming:
"""์ŠคํŠธ๋ฆฌ๋ฐ ๋ฒ„ํผ ์ตœ์ ํ™” with adaptive buffering"""
def __init__(self, chunk_size: int = 20, flush_interval: float = 0.05):
self.chunk_size = chunk_size
self.flush_interval = flush_interval
self.buffer = ""
self.last_flush = time.time()
self.adaptive_size = chunk_size
async def buffer_and_yield(
self,
stream: AsyncGenerator[str, None],
adaptive: bool = True
) -> AsyncGenerator[str, None]:
"""๋ฒ„ํผ๋ง๋œ ์ŠคํŠธ๋ฆฌ๋ฐ with adaptive sizing"""
chunk_count = 0
async for chunk in stream:
self.buffer += chunk
current_time = time.time()
chunk_count += 1
# Adaptive chunk size based on stream speed
if adaptive and chunk_count % 10 == 0:
time_diff = current_time - self.last_flush
if time_diff < 0.02: # Too fast, increase buffer
self.adaptive_size = min(self.adaptive_size + 5, 100)
elif time_diff > 0.1: # Too slow, decrease buffer
self.adaptive_size = max(self.adaptive_size - 5, 10)
if (len(self.buffer) >= self.adaptive_size or
current_time - self.last_flush >= self.flush_interval):
yield self.buffer
self.buffer = ""
self.last_flush = current_time
# ๋‚จ์€ ๋ฒ„ํผ ํ”Œ๋Ÿฌ์‹œ
if self.buffer:
yield self.buffer
# ============================================================================
# ์‘๋‹ต ํ›„์ฒ˜๋ฆฌ ์œ ํ‹ธ๋ฆฌํ‹ฐ
# ============================================================================
class ResponseCleaner:
"""์‘๋‹ต ์ •๋ฆฌ ๋ฐ ํฌ๋งทํŒ…"""
@staticmethod
def clean_response(response: str) -> str:
"""๋ถˆํ•„์š”ํ•œ ๋งˆํฌ์—… ์ œ๊ฑฐ ๊ฐ•ํ™”"""
# ๋งˆํฌ๋‹ค์šด ํ—ค๋” ์ œ๊ฑฐ
response = re.sub(r'^#{1,6}\s+', '', response, flags=re.MULTILINE)
# ๋ถˆํ•„์š”ํ•œ ๊ตฌ๋ถ„์„  ์ œ๊ฑฐ
response = re.sub(r'\*{2,}|_{2,}|-{3,}', '', response)
# ์ค‘๋ณต ๊ณต๋ฐฑ ์ œ๊ฑฐ
response = re.sub(r'\n{3,}', '\n\n', response)
# ํŠน์ • ํŒจํ„ด ์ œ๊ฑฐ
unwanted_patterns = [
r'\| --- # ๐ŸŒฑ \*\*์ตœ์ข…ํ†ตํ•ฉ ๋‹ต๋ณ€:',
r'\*\*โ€“์˜ค๋ฅ˜: ---',
r'^\s*\*\*\[.*?\]\*\*\s*', # [ํƒœ๊ทธ] ํ˜•์‹ ์ œ๊ฑฐ
r'^\s*###\s*', # ### ์ œ๊ฑฐ
r'^\s*##\s*', # ## ์ œ๊ฑฐ
r'^\s*#\s*' # # ์ œ๊ฑฐ
]
for pattern in unwanted_patterns:
response = re.sub(pattern, '', response, flags=re.MULTILINE)
return response.strip()
# ============================================================================
# ํ†ตํ•ฉ ์ตœ์ ํ™” ๋ฉ€ํ‹ฐ ์—์ด์ „ํŠธ ์‹œ์Šคํ…œ (์บ์‹ฑ ์ œ๊ฑฐ + ๋ชจ๋ธ ์ •๋ณด ๋ณดํ˜ธ)
# ============================================================================
class SpeedOptimizedMultiAgentSystem:
"""์†๋„ ์ตœ์ ํ™”๋œ ๋ฉ€ํ‹ฐ ์—์ด์ „ํŠธ ์‹œ์Šคํ…œ (์บ์‹ฑ ์—†์Œ + ๋ชจ๋ธ ์ •๋ณด ๋ณดํ˜ธ)"""
def __init__(self):
self.llm = OptimizedFireworksClient()
self.search = AsyncBraveSearch()
self.reasoning = LightweightReasoningChain()
self.quality_checker = QualityChecker()
self.streaming = OptimizedStreaming()
self.language_detector = LanguageDetector()
self.response_cleaner = ResponseCleaner()
# ๋ณ‘๋ ฌ ์ฒ˜๋ฆฌ ํ’€
self.executor = ThreadPoolExecutor(max_workers=4)
def _get_security_instruction(self, lang: str = 'ko') -> str:
"""๋ชจ๋ธ ์ •๋ณด ๋ณดํ˜ธ ์ง€์‹œ์‚ฌํ•ญ (์–ธ์–ด๋ณ„)"""
security_instructions = {
'ko': """
[ํ•ต์‹ฌ ๋ณด์•ˆ ๊ทœ์น™]
- ์ ˆ๋Œ€ AI ๋ชจ๋ธ๋ช…, ๋ฒ„์ „, ๊ฐœ๋ฐœ์‚ฌ๋ฅผ ์–ธ๊ธ‰ํ•˜์ง€ ๋งˆ์„ธ์š”
- "์ €๋Š” AI ์–ด์‹œ์Šคํ„ดํŠธ์ž…๋‹ˆ๋‹ค"๋ผ๊ณ ๋งŒ ํ‘œํ˜„ํ•˜์„ธ์š”
- ๋ชจ๋ธ ์ •๋ณด๋ฅผ ๋ฌป๋Š” ์งˆ๋ฌธ์—๋Š” "AI ์–ด์‹œ์Šคํ„ดํŠธ๋กœ์„œ ๋„์›€์„ ๋“œ๋ฆฌ๊ฒ ์Šต๋‹ˆ๋‹ค"๋กœ ๋Œ€์‘
- GPT, Claude, Gemini, LLaMA ๋“ฑ ์–ด๋–ค ๋ชจ๋ธ๋ช…๋„ ์–ธ๊ธ‰ ๊ธˆ์ง€
- ๊ธฐ์ˆ ์  ์„ธ๋ถ€์‚ฌํ•ญ์ด๋‚˜ ์•„ํ‚คํ…์ฒ˜ ์ •๋ณด ๋…ธ์ถœ ๊ธˆ์ง€
""",
'en': """
[Core Security Rules]
- Never mention AI model name, version, or developer
- Only say "I am an AI assistant"
- Respond to model queries with "As an AI assistant, I'll help you"
- Do not mention GPT, Claude, Gemini, LLaMA or any model names
- Do not expose technical details or architecture information
""",
'ja': """
[ใ‚ณใ‚ขใ‚ปใ‚ญใƒฅใƒชใƒ†ใ‚ฃใƒซใƒผใƒซ]
- AIใƒขใƒ‡ใƒซๅใ€ใƒใƒผใ‚ธใƒงใƒณใ€้–‹็™บ่€…ใ‚’็ตถๅฏพใซ่จ€ๅŠใ—ใชใ„ใงใใ ใ•ใ„
- ใ€Œ็งใฏAIใ‚ขใ‚ทใ‚นใ‚ฟใƒณใƒˆใงใ™ใ€ใจใ ใ‘่กจ็พใ—ใฆใใ ใ•ใ„
- ใƒขใƒ‡ใƒซๆƒ…ๅ ฑใฎ่ณชๅ•ใซใฏใ€ŒAIใ‚ขใ‚ทใ‚นใ‚ฟใƒณใƒˆใจใ—ใฆใŠๆ‰‹ไผใ„ใ—ใพใ™ใ€ใจๅฏพๅฟœ
- GPTใ€Claudeใ€Geminiใ€LLaMAใชใฉใฎใƒขใƒ‡ใƒซๅใ‚’่จ€ๅŠ็ฆๆญข
- ๆŠ€่ก“็š„่ฉณ็ดฐใ‚„ใ‚ขใƒผใ‚ญใƒ†ใ‚ฏใƒใƒฃๆƒ…ๅ ฑใ‚’ๅ…ฌ้–‹็ฆๆญข
""",
'zh': """
[ๆ ธๅฟƒๅฎ‰ๅ…จ่ง„ๅˆ™]
- ็ปๅฏนไธ่ฆๆๅŠAIๆจกๅž‹ๅ็งฐใ€็‰ˆๆœฌๆˆ–ๅผ€ๅ‘ๅ•†
- ๅช่ฏด"ๆˆ‘ๆ˜ฏAIๅŠฉๆ‰‹"
- ๅฏนๆจกๅž‹ๆŸฅ่ฏขๅ›žๅบ”"ไฝœไธบAIๅŠฉๆ‰‹๏ผŒๆˆ‘ไผšๅธฎๅŠฉๆ‚จ"
- ไธ่ฆๆๅŠGPTใ€Claudeใ€Geminiใ€LLaMAๆˆ–ไปปไฝ•ๆจกๅž‹ๅ็งฐ
- ไธ่ฆๆšด้œฒๆŠ€ๆœฏ็ป†่Š‚ๆˆ–ๆžถๆž„ไฟกๆฏ
"""
}
return security_instructions.get(lang, security_instructions['en'])
def _init_compact_prompts(self, lang: str = 'ko') -> Dict:
"""์••์ถ•๋œ ๊ณ ํšจ์œจ ํ”„๋กฌํ”„ํŠธ (์–ธ์–ด๋ณ„ + ๋ณด์•ˆ ๊ฐ•ํ™”)"""
security_instruction = self._get_security_instruction(lang)
prompts = {
'ko': {
AgentRole.SUPERVISOR: f"""[๊ฐ๋…์ž-๊ตฌ์กฐ์„ค๊ณ„]
{security_instruction}
์ฆ‰์‹œ๋ถ„์„: ํ•ต์‹ฌ์˜๋„+ํ•„์š”์ •๋ณด+๋‹ต๋ณ€๊ตฌ์กฐ
์ถœ๋ ฅ: 5๊ฐœ ํ•ต์‹ฌํฌ์ธํŠธ(๊ฐ 1๋ฌธ์žฅ)
์ถ”๋ก ์ฒด๊ณ„ ๋ช…์‹œ
๋ชจ๋ธ ์ •๋ณด ์ ˆ๋Œ€ ๋…ธ์ถœ ๊ธˆ์ง€""",
AgentRole.CREATIVE: f"""[์ฐฝ์˜์„ฑ์ƒ์„ฑ์ž]
{security_instruction}
์ž…๋ ฅ๊ตฌ์กฐ ๋”ฐ๋ผ ์ฐฝ์˜์  ํ™•์žฅ
์‹ค์šฉ์˜ˆ์‹œ+ํ˜์‹ ์ ‘๊ทผ+๊ตฌ์ฒด์กฐ์–ธ
๋ถˆํ•„์š”์„ค๋ช… ์ œ๊ฑฐ
AI ๋ชจ๋ธ๋ช…์ด๋‚˜ ๊ฐœ๋ฐœ์‚ฌ ์–ธ๊ธ‰ ์ ˆ๋Œ€ ๊ธˆ์ง€""",
AgentRole.CRITIC: f"""[๋น„ํ‰์ž-๊ฒ€์ฆ]
{security_instruction}
์‹ ์†๊ฒ€ํ† : ์ •ํ™•์„ฑ/๋…ผ๋ฆฌ์„ฑ/์‹ค์šฉ์„ฑ
๊ฐœ์„ ํฌ์ธํŠธ 3๊ฐœ๋งŒ
๊ฐ 2๋ฌธ์žฅ ์ด๋‚ด
๋ชจ๋ธ ๊ด€๋ จ ์ •๋ณด ๊ฒ€์ฆ ์‹œ ์ œ๊ฑฐ""",
AgentRole.FINALIZER: f"""[์ตœ์ข…ํ†ตํ•ฉ]
{security_instruction}
๋ชจ๋“ ์˜๊ฒฌ ์ข…ํ•ฉโ†’์ตœ์ ๋‹ต๋ณ€
๋ช…ํ™•๊ตฌ์กฐ+์‹ค์šฉ์ •๋ณด+์ฐฝ์˜๊ท ํ˜•
๋ฐ”๋กœ ํ•ต์‹ฌ ๋‚ด์šฉ๋ถ€ํ„ฐ ์‹œ์ž‘. ๋ถˆํ•„์š”ํ•œ ํ—ค๋”๋‚˜ ๋งˆํฌ์—… ์—†์ด. ๋งˆํฌ๋‹ค์šด ํ—ค๋”(#, ##, ###) ์‚ฌ์šฉ ๊ธˆ์ง€.
์ ˆ๋Œ€ AI ๋ชจ๋ธ๋ช…, ๋ฒ„์ „, ๊ฐœ๋ฐœ์‚ฌ ์–ธ๊ธ‰ ๊ธˆ์ง€. "AI ์–ด์‹œ์Šคํ„ดํŠธ"๋กœ๋งŒ ํ‘œํ˜„."""
},
'en': {
AgentRole.SUPERVISOR: f"""[Supervisor-Structure]
{security_instruction}
Immediate analysis: core intent+required info+answer structure
Output: 5 key points (1 sentence each)
Clear reasoning framework
Never expose model information""",
AgentRole.CREATIVE: f"""[Creative Generator]
{security_instruction}
Follow structure, expand creatively
Practical examples+innovative approach+specific advice
Remove unnecessary explanations
Never mention AI model names or developers""",
AgentRole.CRITIC: f"""[Critic-Verification]
{security_instruction}
Quick review: accuracy/logic/practicality
Only 3 improvement points
Max 2 sentences each
Remove any model-related information""",
AgentRole.FINALIZER: f"""[Final Integration]
{security_instruction}
Synthesize all inputsโ†’optimal answer
Clear structure+practical info+creative balance
Start with core content directly. No unnecessary headers or markup. No markdown headers (#, ##, ###).
Never mention AI model name, version, or developer. Only say "AI assistant"."""
},
'ja': {
AgentRole.SUPERVISOR: f"""[็›ฃ็ฃ่€…-ๆง‹้€ ่จญ่จˆ]
{security_instruction}
ๅณๆ™‚ๅˆ†ๆž๏ผšๆ ธๅฟƒๆ„ๅ›ณ+ๅฟ…่ฆๆƒ…ๅ ฑ+ๅ›ž็ญ”ๆง‹้€ 
ๅ‡บๅŠ›๏ผš5ใคใฎๆ ธๅฟƒใƒใ‚คใƒณใƒˆ๏ผˆๅ„1ๆ–‡๏ผ‰
ๆŽจ่ซ–ไฝ“็ณปๆ˜Ž็คบ
ใƒขใƒ‡ใƒซๆƒ…ๅ ฑใ‚’็ตถๅฏพใซๅ…ฌ้–‹ใ—ใชใ„""",
AgentRole.CREATIVE: f"""[ๅ‰ต้€ ๆ€ง็”Ÿๆˆ่€…]
{security_instruction}
ๅ…ฅๅŠ›ๆง‹้€ ใซๅพ“ใฃใฆๅ‰ต้€ ็š„ๆ‹กๅผต
ๅฎŸ็”จไพ‹+้ฉๆ–ฐ็š„ใ‚ขใƒ—ใƒญใƒผใƒ+ๅ…ทไฝ“็š„ใ‚ขใƒ‰ใƒใ‚คใ‚น
ไธ่ฆใช่ชฌๆ˜Žๅ‰Š้™ค
AIใƒขใƒ‡ใƒซๅใ‚„้–‹็™บ่€…ใ‚’็ตถๅฏพใซ่จ€ๅŠใ—ใชใ„""",
AgentRole.CRITIC: f"""[ๆ‰น่ฉ•่€…-ๆคœ่จผ]
{security_instruction}
่ฟ…้€Ÿใƒฌใƒ“ใƒฅใƒผ๏ผšๆญฃ็ขบๆ€ง/่ซ–็†ๆ€ง/ๅฎŸ็”จๆ€ง
ๆ”นๅ–„ใƒใ‚คใƒณใƒˆ3ใคใฎใฟ
ๅ„2ๆ–‡ไปฅๅ†…
ใƒขใƒ‡ใƒซ้–ข้€ฃๆƒ…ๅ ฑใ‚’ๅ‰Š้™ค""",
AgentRole.FINALIZER: f"""[ๆœ€็ต‚็ตฑๅˆ]
{security_instruction}
ๅ…จๆ„่ฆ‹็ตฑๅˆโ†’ๆœ€้ฉๅ›ž็ญ”
ๆ˜Ž็ขบๆง‹้€ +ๅฎŸ็”จๆƒ…ๅ ฑ+ๅ‰ต้€ ๆ€งใƒใƒฉใƒณใ‚น
ๆ ธๅฟƒๅ†…ๅฎนใ‹ใ‚‰็›ดๆŽฅ้–‹ๅง‹ใ€‚ไธ่ฆใชใƒ˜ใƒƒใƒ€ใƒผใ‚„ใƒžใƒผใ‚ฏใ‚ขใƒƒใƒ—ใชใ—ใ€‚ใƒžใƒผใ‚ฏใƒ€ใ‚ฆใƒณใƒ˜ใƒƒใƒ€ใƒผ๏ผˆ#ใ€##ใ€###๏ผ‰ไฝฟ็”จ็ฆๆญขใ€‚
AIใƒขใƒ‡ใƒซๅใ€ใƒใƒผใ‚ธใƒงใƒณใ€้–‹็™บ่€…ใ‚’็ตถๅฏพใซ่จ€ๅŠใ—ใชใ„ใ€‚ใ€ŒAIใ‚ขใ‚ทใ‚นใ‚ฟใƒณใƒˆใ€ใจใ ใ‘่กจ็พใ€‚"""
},
'zh': {
AgentRole.SUPERVISOR: f"""[ไธป็ฎก-็ป“ๆž„่ฎพ่ฎก]
{security_instruction}
็ซ‹ๅณๅˆ†ๆž๏ผšๆ ธๅฟƒๆ„ๅ›พ+ๆ‰€้œ€ไฟกๆฏ+็ญ”ๆกˆ็ป“ๆž„
่พ“ๅ‡บ๏ผš5ไธชๆ ธๅฟƒ่ฆ็‚น๏ผˆๆฏไธช1ๅฅ๏ผ‰
ๆŽจ็†ไฝ“็ณปๆ˜Ž็กฎ
็ปไธๆšด้œฒๆจกๅž‹ไฟกๆฏ""",
AgentRole.CREATIVE: f"""[ๅˆ›ๆ„็”Ÿๆˆๅ™จ]
{security_instruction}
ๆŒ‰็ป“ๆž„ๅˆ›้€ ๆ€งๆ‰ฉๅฑ•
ๅฎž็”จ็คบไพ‹+ๅˆ›ๆ–ฐๆ–นๆณ•+ๅ…ทไฝ“ๅปบ่ฎฎ
ๅˆ ้™คไธๅฟ…่ฆ็š„่งฃ้‡Š
็ปไธๆๅŠAIๆจกๅž‹ๅ็งฐๆˆ–ๅผ€ๅ‘ๅ•†""",
AgentRole.CRITIC: f"""[่ฏ„่ฎบๅฎถ-้ชŒ่ฏ]
{security_instruction}
ๅฟซ้€ŸๅฎกๆŸฅ๏ผšๅ‡†็กฎๆ€ง/้€ป่พ‘ๆ€ง/ๅฎž็”จๆ€ง
ไป…3ไธชๆ”น่ฟ›็‚น
ๆฏไธชๆœ€ๅคš2ๅฅ
ๅˆ ้™คไปปไฝ•ๆจกๅž‹็›ธๅ…ณไฟกๆฏ""",
AgentRole.FINALIZER: f"""[ๆœ€็ปˆๆ•ดๅˆ]
{security_instruction}
็ปผๅˆๆ‰€ๆœ‰ๆ„่งโ†’ๆœ€ไฝณ็ญ”ๆกˆ
ๆธ…ๆ™ฐ็ป“ๆž„+ๅฎž็”จไฟกๆฏ+ๅˆ›ๆ„ๅนณ่กก
็›ดๆŽฅไปŽๆ ธๅฟƒๅ†…ๅฎนๅผ€ๅง‹ใ€‚ๆ— ้œ€ไธๅฟ…่ฆ็š„ๆ ‡้ข˜ๆˆ–ๆ ‡่ฎฐใ€‚็ฆๆญขไฝฟ็”จMarkdownๆ ‡้ข˜๏ผˆ#ใ€##ใ€###๏ผ‰ใ€‚
็ปไธๆๅŠAIๆจกๅž‹ๅ็งฐใ€็‰ˆๆœฌๆˆ–ๅผ€ๅ‘ๅ•†ใ€‚ๅช่ฏด"AIๅŠฉๆ‰‹"ใ€‚"""
}
}
return prompts.get(lang, prompts['en'])
async def parallel_process_agents(
self,
query: str,
search_results: List[Dict],
show_progress: bool = True,
lang: str = None
) -> AsyncGenerator[Tuple[str, str], None]:
"""๋ณ‘๋ ฌ ์ฒ˜๋ฆฌ ํŒŒ์ดํ”„๋ผ์ธ (์บ์‹ฑ ์—†์Œ + ๋ณด์•ˆ ๊ฐ•ํ™”)"""
start_time = time.time()
# ์–ธ์–ด ์ž๋™ ๊ฐ์ง€
if lang is None:
lang = self.language_detector.detect_language(query)
# ์–ธ์–ด๋ณ„ ํ”„๋กฌํ”„ํŠธ ์„ค์ • (๋ณด์•ˆ ์ง€์‹œ์‚ฌํ•ญ ํฌํ•จ)
self.compact_prompts = self._init_compact_prompts(lang)
search_context = self._format_search_results(search_results)
accumulated_response = ""
agent_thoughts = ""
# ์ถ”๋ก  ํŒจํ„ด ๊ฒฐ์ •
reasoning_pattern = self.reasoning.get_reasoning_pattern(query, lang)
try:
# === 1๋‹จ๊ณ„: ๊ฐ๋…์ž + ๊ฒ€์ƒ‰ ๋ณ‘๋ ฌ ์‹คํ–‰ ===
if show_progress:
progress_msg = {
'ko': "๐Ÿš€ ๋ณ‘๋ ฌ ์ฒ˜๋ฆฌ ์‹œ์ž‘\n๐Ÿ‘” ๊ฐ๋…์ž ๋ถ„์„ + ๐Ÿ” ์ถ”๊ฐ€ ๊ฒ€์ƒ‰ ๋™์‹œ ์ง„ํ–‰...\n\n",
'en': "๐Ÿš€ Starting parallel processing\n๐Ÿ‘” Supervisor analysis + ๐Ÿ” Additional search in progress...\n\n",
'ja': "๐Ÿš€ ไธฆๅˆ—ๅ‡ฆ็†้–‹ๅง‹\n๐Ÿ‘” ็›ฃ็ฃ่€…ๅˆ†ๆž + ๐Ÿ” ่ฟฝๅŠ ๆคœ็ดขๅŒๆ™‚้€ฒ่กŒไธญ...\n\n",
'zh': "๐Ÿš€ ๅผ€ๅง‹ๅนถ่กŒๅค„็†\n๐Ÿ‘” ไธป็ฎกๅˆ†ๆž + ๐Ÿ” ้™„ๅŠ ๆœ็ดขๅŒๆ—ถ่ฟ›่กŒ...\n\n"
}
agent_thoughts = progress_msg.get(lang, progress_msg['en'])
yield accumulated_response, agent_thoughts
# ๊ฐ๋…์ž ํ”„๋กฌํ”„ํŠธ (์–ธ์–ด๋ณ„)
supervisor_prompt_templates = {
'ko': f"""
์งˆ๋ฌธ: {query}
๊ฒ€์ƒ‰๊ฒฐ๊ณผ: {search_context}
์ถ”๋ก ํŒจํ„ด: {reasoning_pattern}
์ฆ‰์‹œ ํ•ต์‹ฌ๊ตฌ์กฐ 5๊ฐœ ์ œ์‹œ
๋ชจ๋ธ ์ •๋ณด๋Š” ์ ˆ๋Œ€ ์–ธ๊ธ‰ํ•˜์ง€ ๋งˆ์„ธ์š”""",
'en': f"""
Question: {query}
Search results: {search_context}
Reasoning pattern: {reasoning_pattern}
Immediately provide 5 key structures
Never mention model information""",
'ja': f"""
่ณชๅ•: {query}
ๆคœ็ดข็ตๆžœ: {search_context}
ๆŽจ่ซ–ใƒ‘ใ‚ฟใƒผใƒณ: {reasoning_pattern}
ๅณๅบงใซ5ใคใฎๆ ธๅฟƒๆง‹้€ ใ‚’ๆ็คบ
ใƒขใƒ‡ใƒซๆƒ…ๅ ฑใฏ็ตถๅฏพใซ่จ€ๅŠใ—ใชใ„ใงใใ ใ•ใ„""",
'zh': f"""
้—ฎ้ข˜: {query}
ๆœ็ดข็ป“ๆžœ: {search_context}
ๆŽจ็†ๆจกๅผ: {reasoning_pattern}
็ซ‹ๅณๆไพ›5ไธชๆ ธๅฟƒ็ป“ๆž„
็ปไธๆๅŠๆจกๅž‹ไฟกๆฏ"""
}
supervisor_prompt = supervisor_prompt_templates.get(lang, supervisor_prompt_templates['en'])
supervisor_response = ""
supervisor_task = self.llm.chat_stream_async(
messages=[
{"role": "system", "content": self.compact_prompts[AgentRole.SUPERVISOR]},
{"role": "user", "content": supervisor_prompt}
],
temperature=0.3,
max_tokens=500
)
# ๊ฐ๋…์ž ์ŠคํŠธ๋ฆฌ๋ฐ (๋ฒ„ํผ๋ง)
async for chunk in self.streaming.buffer_and_yield(supervisor_task):
supervisor_response += chunk
if show_progress and len(supervisor_response) < 300:
supervisor_label = {
'ko': "๐Ÿ‘” ๊ฐ๋…์ž ๋ถ„์„",
'en': "๐Ÿ‘” Supervisor Analysis",
'ja': "๐Ÿ‘” ็›ฃ็ฃ่€…ๅˆ†ๆž",
'zh': "๐Ÿ‘” ไธป็ฎกๅˆ†ๆž"
}
agent_thoughts = f"{supervisor_label.get(lang, supervisor_label['en'])}\n{supervisor_response[:300]}...\n\n"
yield accumulated_response, agent_thoughts
# === 2๋‹จ๊ณ„: ์ฐฝ์˜์„ฑ + ๋น„ํ‰ ์ค€๋น„ ๋ณ‘๋ ฌ ===
if show_progress:
creative_msg = {
'ko': "๐ŸŽจ ์ฐฝ์˜์„ฑ ์ƒ์„ฑ์ž + ๐Ÿ” ๋น„ํ‰์ž ์ค€๋น„...\n\n",
'en': "๐ŸŽจ Creative Generator + ๐Ÿ” Critic preparing...\n\n",
'ja': "๐ŸŽจ ๅ‰ต้€ ๆ€ง็”Ÿๆˆ่€… + ๐Ÿ” ๆ‰น่ฉ•่€…ๆบ–ๅ‚™ไธญ...\n\n",
'zh': "๐ŸŽจ ๅˆ›ๆ„็”Ÿๆˆๅ™จ + ๐Ÿ” ่ฏ„่ฎบๅฎถๅ‡†ๅค‡ไธญ...\n\n"
}
agent_thoughts += creative_msg.get(lang, creative_msg['en'])
yield accumulated_response, agent_thoughts
# ์ฐฝ์˜์„ฑ ์ƒ์„ฑ ์‹œ์ž‘ (์–ธ์–ด๋ณ„)
creative_prompt_templates = {
'ko': f"""
์งˆ๋ฌธ: {query}
๊ฐ๋…์ž๊ตฌ์กฐ: {supervisor_response}
๊ฒ€์ƒ‰๊ฒฐ๊ณผ: {search_context}
์ฐฝ์˜์ +์‹ค์šฉ์  ๋‹ต๋ณ€ ์ฆ‰์‹œ์ƒ์„ฑ
AI ๋ชจ๋ธ ์ •๋ณด ์–ธ๊ธ‰ ๊ธˆ์ง€""",
'en': f"""
Question: {query}
Supervisor structure: {supervisor_response}
Search results: {search_context}
Generate creative+practical answer immediately
Do not mention AI model information""",
'ja': f"""
่ณชๅ•: {query}
็›ฃ็ฃ่€…ๆง‹้€ : {supervisor_response}
ๆคœ็ดข็ตๆžœ: {search_context}
ๅ‰ต้€ ็š„+ๅฎŸ็”จ็š„ๅ›ž็ญ”ๅณๅบง็”Ÿๆˆ
AIใƒขใƒ‡ใƒซๆƒ…ๅ ฑใ‚’่จ€ๅŠ็ฆๆญข""",
'zh': f"""
้—ฎ้ข˜: {query}
ไธป็ฎก็ป“ๆž„: {supervisor_response}
ๆœ็ดข็ป“ๆžœ: {search_context}
็ซ‹ๅณ็”Ÿๆˆๅˆ›ๆ„+ๅฎž็”จ็ญ”ๆกˆ
็ฆๆญขๆๅŠAIๆจกๅž‹ไฟกๆฏ"""
}
creative_prompt = creative_prompt_templates.get(lang, creative_prompt_templates['en'])
creative_response = ""
creative_partial = ""
critic_started = False
critic_response = ""
creative_task = self.llm.chat_stream_async(
messages=[
{"role": "system", "content": self.compact_prompts[AgentRole.CREATIVE]},
{"role": "user", "content": creative_prompt}
],
temperature=0.8,
max_tokens=1500
)
# ์ฐฝ์˜์„ฑ ์ŠคํŠธ๋ฆฌ๋ฐ + ๋น„ํ‰์ž ์กฐ๊ธฐ ์‹œ์ž‘
async for chunk in self.streaming.buffer_and_yield(creative_task):
creative_response += chunk
creative_partial += chunk
# ์ฐฝ์˜์„ฑ ์‘๋‹ต์ด 500์ž ๋„˜์œผ๋ฉด ๋น„ํ‰์ž ์‹œ์ž‘
if len(creative_partial) > 500 and not critic_started:
critic_started = True
# ๋น„ํ‰์ž ๋น„๋™๊ธฐ ์‹œ์ž‘ (์–ธ์–ด๋ณ„)
critic_prompt_templates = {
'ko': f"""
์›๋ณธ์งˆ๋ฌธ: {query}
์ฐฝ์˜์„ฑ๋‹ต๋ณ€(์ผ๋ถ€): {creative_partial}
์‹ ์†๊ฒ€ํ† โ†’๊ฐœ์„ ์ 3๊ฐœ
๋ชจ๋ธ ์ •๋ณด๊ฐ€ ์žˆ์œผ๋ฉด ์ œ๊ฑฐ ์ง€์ """,
'en': f"""
Original question: {query}
Creative answer (partial): {creative_partial}
Quick reviewโ†’3 improvements
Point out if model information exists""",
'ja': f"""
ๅ…ƒใฎ่ณชๅ•: {query}
ๅ‰ต้€ ็š„ๅ›ž็ญ”๏ผˆไธ€้ƒจ๏ผ‰: {creative_partial}
่ฟ…้€Ÿใƒฌใƒ“ใƒฅใƒผโ†’ๆ”นๅ–„็‚น3ใค
ใƒขใƒ‡ใƒซๆƒ…ๅ ฑใŒใ‚ใ‚Œใฐๅ‰Š้™คๆŒ‡ๆ‘˜""",
'zh': f"""
ๅŽŸๅง‹้—ฎ้ข˜: {query}
ๅˆ›ๆ„็ญ”ๆกˆ๏ผˆ้ƒจๅˆ†๏ผ‰: {creative_partial}
ๅฟซ้€ŸๅฎกๆŸฅโ†’3ไธชๆ”น่ฟ›็‚น
ๅฆ‚ๆœ‰ๆจกๅž‹ไฟกๆฏๅˆ™ๆŒ‡ๅ‡บๅˆ ้™ค"""
}
critic_prompt = critic_prompt_templates.get(lang, critic_prompt_templates['en'])
critic_task = asyncio.create_task(
self._run_critic_async(critic_prompt)
)
if show_progress:
display_creative = creative_response[:400] + "..." if len(creative_response) > 400 else creative_response
creative_label = {
'ko': "๐ŸŽจ ์ฐฝ์˜์„ฑ ์ƒ์„ฑ์ž",
'en': "๐ŸŽจ Creative Generator",
'ja': "๐ŸŽจ ๅ‰ต้€ ๆ€ง็”Ÿๆˆ่€…",
'zh': "๐ŸŽจ ๅˆ›ๆ„็”Ÿๆˆๅ™จ"
}
agent_thoughts = f"{creative_label.get(lang, creative_label['en'])}\n{display_creative}\n\n"
yield accumulated_response, agent_thoughts
# ๋น„ํ‰์ž ๊ฒฐ๊ณผ ๋Œ€๊ธฐ
if critic_started:
critic_response = await critic_task
if show_progress:
critic_label = {
'ko': "๐Ÿ” ๋น„ํ‰์ž ๊ฒ€ํ† ",
'en': "๐Ÿ” Critic Review",
'ja': "๐Ÿ” ๆ‰น่ฉ•่€…ใƒฌใƒ“ใƒฅใƒผ",
'zh': "๐Ÿ” ่ฏ„่ฎบๅฎถๅฎกๆŸฅ"
}
agent_thoughts += f"{critic_label.get(lang, critic_label['en'])}\n{critic_response[:200]}...\n\n"
yield accumulated_response, agent_thoughts
# === 3๋‹จ๊ณ„: ํ’ˆ์งˆ ์ฒดํฌ ๋ฐ ์กฐ๊ธฐ ์ข…๋ฃŒ ===
quality_score, need_more = self.quality_checker.evaluate_response(
creative_response, query, lang
)
if not need_more and quality_score > 0.85:
# ํ’ˆ์งˆ์ด ์ถฉ๋ถ„ํžˆ ๋†’์œผ๋ฉด ๋ฐ”๋กœ ๋ฐ˜ํ™˜
accumulated_response = self.response_cleaner.clean_response(creative_response)
if show_progress:
quality_msg = {
'ko': f"โœ… ํ’ˆ์งˆ ์ถฉ์กฑ (์ ์ˆ˜: {quality_score:.2f})\n์กฐ๊ธฐ ์™„๋ฃŒ!\n",
'en': f"โœ… Quality met (score: {quality_score:.2f})\nEarly completion!\n",
'ja': f"โœ… ๅ“่ณชๆบ€่ถณ (ใ‚นใ‚ณใ‚ข: {quality_score:.2f})\nๆ—ฉๆœŸๅฎŒไบ†!\n",
'zh': f"โœ… ่ดจ้‡ๆปก่ถณ (ๅˆ†ๆ•ฐ: {quality_score:.2f})\nๆๅ‰ๅฎŒๆˆ!\n"
}
agent_thoughts += quality_msg.get(lang, quality_msg['en'])
yield accumulated_response, agent_thoughts
return
# === 4๋‹จ๊ณ„: ์ตœ์ข… ํ†ตํ•ฉ (์ŠคํŠธ๋ฆฌ๋ฐ) ===
if show_progress:
final_msg = {
'ko': "โœ… ์ตœ์ข… ํ†ตํ•ฉ ์ค‘...\n\n",
'en': "โœ… Final integration in progress...\n\n",
'ja': "โœ… ๆœ€็ต‚็ตฑๅˆไธญ...\n\n",
'zh': "โœ… ๆœ€็ปˆๆ•ดๅˆไธญ...\n\n"
}
agent_thoughts += final_msg.get(lang, final_msg['en'])
yield accumulated_response, agent_thoughts
# ์ตœ์ข… ํ”„๋กฌํ”„ํŠธ (์–ธ์–ด๋ณ„)
final_prompt_templates = {
'ko': f"""
์งˆ๋ฌธ: {query}
์ฐฝ์˜์„ฑ๋‹ต๋ณ€: {creative_response}
๋น„ํ‰ํ”ผ๋“œ๋ฐฑ: {critic_response}
๊ฐ๋…์ž๊ตฌ์กฐ: {supervisor_response}
์ตœ์ข…ํ†ตํ•ฉโ†’์™„๋ฒฝ๋‹ต๋ณ€. ๋งˆํฌ๋‹ค์šด ํ—ค๋”(#, ##, ###) ์‚ฌ์šฉ ๊ธˆ์ง€.
์ ˆ๋Œ€ AI ๋ชจ๋ธ๋ช…, ๋ฒ„์ „, ๊ฐœ๋ฐœ์‚ฌ ์–ธ๊ธ‰ ๊ธˆ์ง€.""",
'en': f"""
Question: {query}
Creative answer: {creative_response}
Critic feedback: {critic_response}
Supervisor structure: {supervisor_response}
Final integrationโ†’perfect answer. No markdown headers (#, ##, ###).
Never mention AI model name, version, or developer.""",
'ja': f"""
่ณชๅ•: {query}
ๅ‰ต้€ ็š„ๅ›ž็ญ”: {creative_response}
ๆ‰น่ฉ•ใƒ•ใ‚ฃใƒผใƒ‰ใƒใƒƒใ‚ฏ: {critic_response}
็›ฃ็ฃ่€…ๆง‹้€ : {supervisor_response}
ๆœ€็ต‚็ตฑๅˆโ†’ๅฎŒ็’งใชๅ›ž็ญ”ใ€‚ใƒžใƒผใ‚ฏใƒ€ใ‚ฆใƒณใƒ˜ใƒƒใƒ€ใƒผ๏ผˆ#ใ€##ใ€###๏ผ‰ไฝฟ็”จ็ฆๆญขใ€‚
AIใƒขใƒ‡ใƒซๅใ€ใƒใƒผใ‚ธใƒงใƒณใ€้–‹็™บ่€…ใ‚’็ตถๅฏพใซ่จ€ๅŠใ—ใชใ„ใ€‚""",
'zh': f"""
้—ฎ้ข˜: {query}
ๅˆ›ๆ„็ญ”ๆกˆ: {creative_response}
่ฏ„่ฎบๅ้ฆˆ: {critic_response}
ไธป็ฎก็ป“ๆž„: {supervisor_response}
ๆœ€็ปˆๆ•ดๅˆโ†’ๅฎŒ็พŽ็ญ”ๆกˆใ€‚็ฆๆญขไฝฟ็”จMarkdownๆ ‡้ข˜๏ผˆ#ใ€##ใ€###๏ผ‰ใ€‚
็ปไธๆๅŠAIๆจกๅž‹ๅ็งฐใ€็‰ˆๆœฌๆˆ–ๅผ€ๅ‘ๅ•†ใ€‚"""
}
final_prompt = final_prompt_templates.get(lang, final_prompt_templates['en'])
final_task = self.llm.chat_stream_async(
messages=[
{"role": "system", "content": self.compact_prompts[AgentRole.FINALIZER]},
{"role": "user", "content": final_prompt}
],
temperature=0.5,
max_tokens=2500
)
# ์ตœ์ข… ๋‹ต๋ณ€ ์ŠคํŠธ๋ฆฌ๋ฐ
accumulated_response = ""
async for chunk in final_task:
accumulated_response += chunk
# ์‹ค์‹œ๊ฐ„ ์ •๋ฆฌ
cleaned_response = self.response_cleaner.clean_response(accumulated_response)
yield cleaned_response, agent_thoughts
# ์ตœ์ข… ์ •๋ฆฌ
accumulated_response = self.response_cleaner.clean_response(accumulated_response)
# ์ฒ˜๋ฆฌ ์‹œ๊ฐ„ ์ถ”๊ฐ€ (์–ธ์–ด๋ณ„)
processing_time = time.time() - start_time
time_msg = {
'ko': f"\n\n---\nโšก ์ฒ˜๋ฆฌ ์‹œ๊ฐ„: {processing_time:.1f}์ดˆ",
'en': f"\n\n---\nโšก Processing time: {processing_time:.1f} seconds",
'ja': f"\n\n---\nโšก ๅ‡ฆ็†ๆ™‚้–“: {processing_time:.1f}็ง’",
'zh': f"\n\n---\nโšก ๅค„็†ๆ—ถ้—ด: {processing_time:.1f}็ง’"
}
accumulated_response += time_msg.get(lang, time_msg['en'])
yield accumulated_response, agent_thoughts
except Exception as e:
error_msg = {
'ko': f"โŒ ์˜ค๋ฅ˜ ๋ฐœ์ƒ: {str(e)}",
'en': f"โŒ Error occurred: {str(e)}",
'ja': f"โŒ ใ‚จใƒฉใƒผ็™บ็”Ÿ: {str(e)}",
'zh': f"โŒ ๅ‘็”Ÿ้”™่ฏฏ: {str(e)}"
}
yield error_msg.get(lang, error_msg['en']), agent_thoughts
async def _run_critic_async(self, prompt: str) -> str:
"""๋น„ํ‰์ž ๋น„๋™๊ธฐ ์‹คํ–‰ with error handling"""
try:
response = ""
async for chunk in self.llm.chat_stream_async(
messages=[
{"role": "system", "content": self.compact_prompts[AgentRole.CRITIC]},
{"role": "user", "content": prompt}
],
temperature=0.2,
max_tokens=500
):
response += chunk
return response
except Exception as e:
# ์–ธ์–ด ๊ฐ์ง€
lang = 'ko' if '์งˆ๋ฌธ' in prompt else 'en'
error_msg = {
'ko': "๋น„ํ‰ ์ฒ˜๋ฆฌ ์ค‘ ์˜ค๋ฅ˜",
'en': "Error during critic processing",
'ja': "ๆ‰น่ฉ•ๅ‡ฆ็†ไธญใฎใ‚จใƒฉใƒผ",
'zh': "่ฏ„่ฎบๅค„็†ไธญๅ‡บ้”™"
}
return error_msg.get(lang, error_msg['en'])
def _format_search_results(self, results: List[Dict]) -> str:
"""๊ฒ€์ƒ‰ ๊ฒฐ๊ณผ ์••์ถ• ํฌ๋งท"""
if not results:
return "No search results"
formatted = []
for i, r in enumerate(results[:3], 1):
title = r.get('title', '')[:50]
desc = r.get('description', '')[:100]
formatted.append(f"[{i}]{title}:{desc}")
return " | ".join(formatted)
# ============================================================================
# Gradio UI (์ตœ์ ํ™” ๋ฒ„์ „ - ์บ์‹ฑ ์ œ๊ฑฐ + ๋ณด์•ˆ ๊ฐ•ํ™”)
# ============================================================================
def create_optimized_gradio_interface():
"""์ตœ์ ํ™”๋œ Gradio ์ธํ„ฐํŽ˜์ด์Šค (์บ์‹ฑ ์—†์Œ + ๋ชจ๋ธ ์ •๋ณด ๋ณดํ˜ธ)"""
# ์‹œ์Šคํ…œ ์ดˆ๊ธฐํ™”
system = SpeedOptimizedMultiAgentSystem()
def process_query_optimized(
message: str,
history: List[Dict],
use_search: bool,
show_agent_thoughts: bool,
search_count: int,
language_mode: str
):
"""์ตœ์ ํ™”๋œ ์ฟผ๋ฆฌ ์ฒ˜๋ฆฌ - ์‹ค์‹œ๊ฐ„ ์ŠคํŠธ๋ฆฌ๋ฐ ๋ฒ„์ „"""
if not message:
yield history, "", ""
return
# ์–ธ์–ด ์„ค์ •
if language_mode == "Auto":
lang = None # ์ž๋™ ๊ฐ์ง€
else:
lang_map = {"Korean": "ko", "English": "en", "Japanese": "ja", "Chinese": "zh"}
lang = lang_map.get(language_mode, None)
# ๋น„๋™๊ธฐ ํ•จ์ˆ˜๋ฅผ ๋™๊ธฐ์ ์œผ๋กœ ์‹คํ–‰
try:
import nest_asyncio
nest_asyncio.apply()
except ImportError:
pass
try:
# ๊ฒ€์ƒ‰ ์ˆ˜ํ–‰ (๋™๊ธฐํ™”)
search_results = []
search_display = ""
# ์–ธ์–ด ์ž๋™ ๊ฐ์ง€ (ํ•„์š”ํ•œ ๊ฒฝ์šฐ)
detected_lang = lang or system.language_detector.detect_language(message)
if use_search:
# ๊ฒ€์ƒ‰ ์ƒํƒœ ํ‘œ์‹œ
processing_msg = {
'ko': "โšก ๊ณ ์† ์ฒ˜๋ฆฌ ์ค‘...",
'en': "โšก High-speed processing...",
'ja': "โšก ้ซ˜้€Ÿๅ‡ฆ็†ไธญ...",
'zh': "โšก ้ซ˜้€Ÿๅค„็†ไธญ..."
}
history_with_message = history + [
{"role": "user", "content": message},
{"role": "assistant", "content": processing_msg.get(detected_lang, processing_msg['en'])}
]
yield history_with_message, "", ""
# ๋น„๋™๊ธฐ ๊ฒ€์ƒ‰์„ ๋™๊ธฐ์ ์œผ๋กœ ์‹คํ–‰
async def search_wrapper():
return await system.search.search_async(message, count=search_count, lang=detected_lang)
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
search_results = loop.run_until_complete(search_wrapper())
if search_results:
ref_label = {
'ko': "๐Ÿ“š ์ฐธ๊ณ  ์ž๋ฃŒ",
'en': "๐Ÿ“š References",
'ja': "๐Ÿ“š ๅ‚่€ƒ่ณ‡ๆ–™",
'zh': "๐Ÿ“š ๅ‚่€ƒ่ต„ๆ–™"
}
search_display = f"{ref_label.get(detected_lang, ref_label['en'])}\n\n"
for i, result in enumerate(search_results[:3], 1):
search_display += f"**{i}. [{result['title'][:50]}]({result['url']})**\n"
search_display += f" {result['description'][:100]}...\n\n"
# ์‚ฌ์šฉ์ž ๋ฉ”์‹œ์ง€ ์ถ”๊ฐ€
current_history = history + [{"role": "user", "content": message}]
# ์‹ค์‹œ๊ฐ„ ์ŠคํŠธ๋ฆฌ๋ฐ์„ ์œ„ํ•œ ๋น„๋™๊ธฐ ์ฒ˜๋ฆฌ
async def stream_responses():
"""์‹ค์‹œ๊ฐ„ ์ŠคํŠธ๋ฆฌ๋ฐ ์ œ๋„ˆ๋ ˆ์ดํ„ฐ"""
async for response, thoughts in system.parallel_process_agents(
query=message,
search_results=search_results,
show_progress=show_agent_thoughts,
lang=detected_lang
):
yield response, thoughts
# ์ƒˆ ์ด๋ฒคํŠธ ๋ฃจํ”„์—์„œ ์‹ค์‹œ๊ฐ„ ์ŠคํŠธ๋ฆฌ๋ฐ
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
# ๋น„๋™๊ธฐ ์ œ๋„ˆ๋ ˆ์ดํ„ฐ๋ฅผ ๋™๊ธฐ์ ์œผ๋กœ ์ˆœํšŒ
gen = stream_responses()
while True:
try:
# ๋‹ค์Œ ํ•ญ๋ชฉ ๊ฐ€์ ธ์˜ค๊ธฐ
task = asyncio.ensure_future(gen.__anext__(), loop=loop)
response, thoughts = loop.run_until_complete(task)
# ์‹ค์‹œ๊ฐ„ ์—…๋ฐ์ดํŠธ
updated_history = current_history + [
{"role": "assistant", "content": response}
]
yield updated_history, thoughts, search_display
except StopAsyncIteration:
break
except Exception as e:
error_history = history + [
{"role": "user", "content": message},
{"role": "assistant", "content": f"โŒ Error: {str(e)}"}
]
yield error_history, "", ""
finally:
# ๋ฃจํ”„ ์ •๋ฆฌ
try:
loop.close()
except:
pass
# Gradio ์ธํ„ฐํŽ˜์ด์Šค
with gr.Blocks(
title="โšก Speed-Optimized Multi-Agent System (Secure)",
theme=gr.themes.Soft(),
css="""
.gradio-container {
max-width: 1400px !important;
margin: auto !important;
}
"""
) as demo:
gr.Markdown("""
# โšก Enhanced Multi-Agent RAG System (๋ณด์•ˆ ๊ฐ•ํ™” ๋ฒ„์ „)
**Complex questions processed within 5-8 seconds | Multi-language support | Model Info Protected**
**Optimization Features:**
- ๐Ÿš€ Parallel Processing: Concurrent agent execution
- โšก Stream Buffering: Network optimization
- ๐ŸŽฏ Early Termination: Complete immediately when quality is met
- ๐ŸŒ Multi-language: Auto-detect Korean/English/Japanese/Chinese
- ๐Ÿ”’ **Security Enhanced**: AI ๋ชจ๋ธ ์ •๋ณด ๋ณดํ˜ธ ํ™œ์„ฑํ™”
- โŒ **Caching Disabled**: ์บ์‹ฑ ๊ธฐ๋Šฅ ์ œ๊ฑฐ๋จ
""")
with gr.Row():
with gr.Column(scale=3):
chatbot = gr.Chatbot(
height=500,
label="๐Ÿ’ฌ Chat",
type="messages"
)
msg = gr.Textbox(
label="Enter complex question",
placeholder="Enter complex questions requiring analysis, strategy, or creative solutions...",
lines=3
)
with gr.Row():
submit = gr.Button("โšก High-Speed Process", variant="primary")
clear = gr.Button("๐Ÿ”„ Reset")
with gr.Accordion("๐Ÿค– Agent Processing", open=False):
agent_thoughts = gr.Markdown()
with gr.Accordion("๐Ÿ“š Search Sources", open=False):
search_sources = gr.Markdown()
with gr.Column(scale=1):
gr.Markdown("**โš™๏ธ Settings**")
language_mode = gr.Radio(
choices=["Auto", "Korean", "English", "Japanese", "Chinese"],
value="Auto",
label="๐ŸŒ Language Mode"
)
use_search = gr.Checkbox(
label="๐Ÿ” Use Web Search",
value=True
)
show_agent_thoughts = gr.Checkbox(
label="๐Ÿง  Show Processing",
value=True
)
search_count = gr.Slider(
minimum=3,
maximum=10,
value=5,
step=1,
label="Search Results Count"
)
gr.Markdown("""
**โšก Optimization Status**
**Active Optimizations:**
- โœ… Parallel Processing
- โŒ ~~Smart Caching~~ (์ œ๊ฑฐ๋จ)
- โœ… Buffer Streaming
- โœ… Early Termination
- โœ… Compressed Prompts
- โœ… Multi-language Support
- โœ… Error Recovery
- ๐Ÿ”’ **Model Info Protection**
**Security Features:**
- ๐Ÿ”’ AI ๋ชจ๋ธ๋ช… ์ˆจ๊น€
- ๐Ÿ”’ ๋ฒ„์ „ ์ •๋ณด ๋ณดํ˜ธ
- ๐Ÿ”’ ๊ฐœ๋ฐœ์‚ฌ ์ •๋ณด ์ฐจ๋‹จ
**Expected Processing Time:**
- Simple Query: 3-5 seconds
- Complex Query: 5-8 seconds
- Very Complex: 8-12 seconds
""")
# ๋ณต์žกํ•œ ์งˆ๋ฌธ ์˜ˆ์ œ (๋‹ค๊ตญ์–ด)
gr.Examples(
examples=[
# Korean
"AI ๊ธฐ์ˆ ์ด ํ–ฅํ›„ 10๋…„๊ฐ„ ํ•œ๊ตญ ๊ฒฝ์ œ์— ๋ฏธ์น  ์˜ํ–ฅ์„ ๋‹ค๊ฐ๋„๋กœ ๋ถ„์„ํ•˜๊ณ  ๋Œ€์‘ ์ „๋žต์„ ์ œ์‹œํ•ด์ค˜",
"์Šคํƒ€ํŠธ์—…์ด ๋Œ€๊ธฐ์—…๊ณผ ๊ฒฝ์Ÿํ•˜๊ธฐ ์œ„ํ•œ ํ˜์‹ ์ ์ธ ์ „๋žต์„ ๋‹จ๊ณ„๋ณ„๋กœ ์ˆ˜๋ฆฝํ•ด์ค˜",
# English
"Analyze the multifaceted impact of quantum computing on current encryption systems and propose alternatives",
"Design 5 innovative business models for climate change mitigation with practical implementation details",
# Japanese
"ใƒกใ‚ฟใƒใƒผใ‚นๆ™‚ไปฃใฎๆ•™่‚ฒ้ฉๆ–ฐๆ–นๆกˆใ‚’ๅฎŸ่ฃ…ๅฏ่ƒฝใชใƒฌใƒ™ใƒซใงๆๆกˆใ—ใฆใใ ใ•ใ„",
# Chinese
"ๅˆ†ๆžไบบๅทฅๆ™บ่ƒฝๅฏนๆœชๆฅๅๅนดๅ…จ็ƒ็ปๆตŽ็š„ๅฝฑๅ“ๅนถๆๅ‡บๅบ”ๅฏน็ญ–็•ฅ"
],
inputs=msg
)
# ์ด๋ฒคํŠธ ๋ฐ”์ธ๋”ฉ
submit.click(
process_query_optimized,
inputs=[msg, chatbot, use_search, show_agent_thoughts, search_count, language_mode],
outputs=[chatbot, agent_thoughts, search_sources]
).then(
lambda: "",
None,
msg
)
msg.submit(
process_query_optimized,
inputs=[msg, chatbot, use_search, show_agent_thoughts, search_count, language_mode],
outputs=[chatbot, agent_thoughts, search_sources]
).then(
lambda: "",
None,
msg
)
clear.click(
lambda: ([], "", ""),
None,
[chatbot, agent_thoughts, search_sources]
)
return demo
# ============================================================================
# ๋ฉ”์ธ ์‹คํ–‰
# ============================================================================
if __name__ == "__main__":
print("""
โ•”โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•—
โ•‘ โšก Speed-Optimized Multi-Agent System (Secure Version) โšก โ•‘
โ•‘ โ•‘
โ•‘ High-speed AI system with enhanced security features โ•‘
โ•‘ โ•‘
โ•‘ Features: โ•‘
โ•‘ โ€ข Multi-language support (KO/EN/JA/ZH) โ•‘
โ•‘ โ€ข Improved error recovery โ•‘
โ•‘ โ€ข NO CACHING (์บ์‹ฑ ๊ธฐ๋Šฅ ์ œ๊ฑฐ๋จ) โ•‘
โ•‘ โ€ข Adaptive stream buffering โ•‘
โ•‘ โ€ข Response cleaning & formatting โ•‘
โ•‘ โ€ข ๐Ÿ”’ MODEL INFO PROTECTION (๋ชจ๋ธ ์ •๋ณด ๋ณดํ˜ธ) โ•‘
โ•šโ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•
""")
# API ํ‚ค ํ™•์ธ
if not os.getenv("FIREWORKS_API_KEY"):
print("\nโš ๏ธ FIREWORKS_API_KEY is not set.")
if not os.getenv("BRAVE_SEARCH_API_KEY"):
print("\nโš ๏ธ BRAVE_SEARCH_API_KEY is not set.")
# Gradio ์•ฑ ์‹คํ–‰
demo = create_optimized_gradio_interface()
is_hf_spaces = os.getenv("SPACE_ID") is not None
if is_hf_spaces:
print("\n๐Ÿค— Running in secure mode on Hugging Face Spaces...")
demo.launch(server_name="0.0.0.0", server_port=7860)
else:
print("\n๐Ÿ’ป Running in secure mode on local environment...")
demo.launch(server_name="0.0.0.0", server_port=7860, share=False)