Upload 6 files
Browse files- modules/__init__.py +0 -0
- modules/attentions.py +349 -0
- modules/commons.py +188 -0
- modules/losses.py +61 -0
- modules/mel_processing.py +112 -0
- modules/modules.py +342 -0
modules/__init__.py
ADDED
File without changes
|
modules/attentions.py
ADDED
@@ -0,0 +1,349 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import copy
|
2 |
+
import math
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
from torch import nn
|
6 |
+
from torch.nn import functional as F
|
7 |
+
|
8 |
+
import modules.commons as commons
|
9 |
+
import modules.modules as modules
|
10 |
+
from modules.modules import LayerNorm
|
11 |
+
|
12 |
+
|
13 |
+
class FFT(nn.Module):
|
14 |
+
def __init__(self, hidden_channels, filter_channels, n_heads, n_layers=1, kernel_size=1, p_dropout=0.,
|
15 |
+
proximal_bias=False, proximal_init=True, **kwargs):
|
16 |
+
super().__init__()
|
17 |
+
self.hidden_channels = hidden_channels
|
18 |
+
self.filter_channels = filter_channels
|
19 |
+
self.n_heads = n_heads
|
20 |
+
self.n_layers = n_layers
|
21 |
+
self.kernel_size = kernel_size
|
22 |
+
self.p_dropout = p_dropout
|
23 |
+
self.proximal_bias = proximal_bias
|
24 |
+
self.proximal_init = proximal_init
|
25 |
+
|
26 |
+
self.drop = nn.Dropout(p_dropout)
|
27 |
+
self.self_attn_layers = nn.ModuleList()
|
28 |
+
self.norm_layers_0 = nn.ModuleList()
|
29 |
+
self.ffn_layers = nn.ModuleList()
|
30 |
+
self.norm_layers_1 = nn.ModuleList()
|
31 |
+
for i in range(self.n_layers):
|
32 |
+
self.self_attn_layers.append(
|
33 |
+
MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout, proximal_bias=proximal_bias,
|
34 |
+
proximal_init=proximal_init))
|
35 |
+
self.norm_layers_0.append(LayerNorm(hidden_channels))
|
36 |
+
self.ffn_layers.append(
|
37 |
+
FFN(hidden_channels, hidden_channels, filter_channels, kernel_size, p_dropout=p_dropout, causal=True))
|
38 |
+
self.norm_layers_1.append(LayerNorm(hidden_channels))
|
39 |
+
|
40 |
+
def forward(self, x, x_mask):
|
41 |
+
"""
|
42 |
+
x: decoder input
|
43 |
+
h: encoder output
|
44 |
+
"""
|
45 |
+
self_attn_mask = commons.subsequent_mask(x_mask.size(2)).to(device=x.device, dtype=x.dtype)
|
46 |
+
x = x * x_mask
|
47 |
+
for i in range(self.n_layers):
|
48 |
+
y = self.self_attn_layers[i](x, x, self_attn_mask)
|
49 |
+
y = self.drop(y)
|
50 |
+
x = self.norm_layers_0[i](x + y)
|
51 |
+
|
52 |
+
y = self.ffn_layers[i](x, x_mask)
|
53 |
+
y = self.drop(y)
|
54 |
+
x = self.norm_layers_1[i](x + y)
|
55 |
+
x = x * x_mask
|
56 |
+
return x
|
57 |
+
|
58 |
+
|
59 |
+
class Encoder(nn.Module):
|
60 |
+
def __init__(self, hidden_channels, filter_channels, n_heads, n_layers, kernel_size=1, p_dropout=0., window_size=4, **kwargs):
|
61 |
+
super().__init__()
|
62 |
+
self.hidden_channels = hidden_channels
|
63 |
+
self.filter_channels = filter_channels
|
64 |
+
self.n_heads = n_heads
|
65 |
+
self.n_layers = n_layers
|
66 |
+
self.kernel_size = kernel_size
|
67 |
+
self.p_dropout = p_dropout
|
68 |
+
self.window_size = window_size
|
69 |
+
|
70 |
+
self.drop = nn.Dropout(p_dropout)
|
71 |
+
self.attn_layers = nn.ModuleList()
|
72 |
+
self.norm_layers_1 = nn.ModuleList()
|
73 |
+
self.ffn_layers = nn.ModuleList()
|
74 |
+
self.norm_layers_2 = nn.ModuleList()
|
75 |
+
for i in range(self.n_layers):
|
76 |
+
self.attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout, window_size=window_size))
|
77 |
+
self.norm_layers_1.append(LayerNorm(hidden_channels))
|
78 |
+
self.ffn_layers.append(FFN(hidden_channels, hidden_channels, filter_channels, kernel_size, p_dropout=p_dropout))
|
79 |
+
self.norm_layers_2.append(LayerNorm(hidden_channels))
|
80 |
+
|
81 |
+
def forward(self, x, x_mask):
|
82 |
+
attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
|
83 |
+
x = x * x_mask
|
84 |
+
for i in range(self.n_layers):
|
85 |
+
y = self.attn_layers[i](x, x, attn_mask)
|
86 |
+
y = self.drop(y)
|
87 |
+
x = self.norm_layers_1[i](x + y)
|
88 |
+
|
89 |
+
y = self.ffn_layers[i](x, x_mask)
|
90 |
+
y = self.drop(y)
|
91 |
+
x = self.norm_layers_2[i](x + y)
|
92 |
+
x = x * x_mask
|
93 |
+
return x
|
94 |
+
|
95 |
+
|
96 |
+
class Decoder(nn.Module):
|
97 |
+
def __init__(self, hidden_channels, filter_channels, n_heads, n_layers, kernel_size=1, p_dropout=0., proximal_bias=False, proximal_init=True, **kwargs):
|
98 |
+
super().__init__()
|
99 |
+
self.hidden_channels = hidden_channels
|
100 |
+
self.filter_channels = filter_channels
|
101 |
+
self.n_heads = n_heads
|
102 |
+
self.n_layers = n_layers
|
103 |
+
self.kernel_size = kernel_size
|
104 |
+
self.p_dropout = p_dropout
|
105 |
+
self.proximal_bias = proximal_bias
|
106 |
+
self.proximal_init = proximal_init
|
107 |
+
|
108 |
+
self.drop = nn.Dropout(p_dropout)
|
109 |
+
self.self_attn_layers = nn.ModuleList()
|
110 |
+
self.norm_layers_0 = nn.ModuleList()
|
111 |
+
self.encdec_attn_layers = nn.ModuleList()
|
112 |
+
self.norm_layers_1 = nn.ModuleList()
|
113 |
+
self.ffn_layers = nn.ModuleList()
|
114 |
+
self.norm_layers_2 = nn.ModuleList()
|
115 |
+
for i in range(self.n_layers):
|
116 |
+
self.self_attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout, proximal_bias=proximal_bias, proximal_init=proximal_init))
|
117 |
+
self.norm_layers_0.append(LayerNorm(hidden_channels))
|
118 |
+
self.encdec_attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout))
|
119 |
+
self.norm_layers_1.append(LayerNorm(hidden_channels))
|
120 |
+
self.ffn_layers.append(FFN(hidden_channels, hidden_channels, filter_channels, kernel_size, p_dropout=p_dropout, causal=True))
|
121 |
+
self.norm_layers_2.append(LayerNorm(hidden_channels))
|
122 |
+
|
123 |
+
def forward(self, x, x_mask, h, h_mask):
|
124 |
+
"""
|
125 |
+
x: decoder input
|
126 |
+
h: encoder output
|
127 |
+
"""
|
128 |
+
self_attn_mask = commons.subsequent_mask(x_mask.size(2)).to(device=x.device, dtype=x.dtype)
|
129 |
+
encdec_attn_mask = h_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
|
130 |
+
x = x * x_mask
|
131 |
+
for i in range(self.n_layers):
|
132 |
+
y = self.self_attn_layers[i](x, x, self_attn_mask)
|
133 |
+
y = self.drop(y)
|
134 |
+
x = self.norm_layers_0[i](x + y)
|
135 |
+
|
136 |
+
y = self.encdec_attn_layers[i](x, h, encdec_attn_mask)
|
137 |
+
y = self.drop(y)
|
138 |
+
x = self.norm_layers_1[i](x + y)
|
139 |
+
|
140 |
+
y = self.ffn_layers[i](x, x_mask)
|
141 |
+
y = self.drop(y)
|
142 |
+
x = self.norm_layers_2[i](x + y)
|
143 |
+
x = x * x_mask
|
144 |
+
return x
|
145 |
+
|
146 |
+
|
147 |
+
class MultiHeadAttention(nn.Module):
|
148 |
+
def __init__(self, channels, out_channels, n_heads, p_dropout=0., window_size=None, heads_share=True, block_length=None, proximal_bias=False, proximal_init=False):
|
149 |
+
super().__init__()
|
150 |
+
assert channels % n_heads == 0
|
151 |
+
|
152 |
+
self.channels = channels
|
153 |
+
self.out_channels = out_channels
|
154 |
+
self.n_heads = n_heads
|
155 |
+
self.p_dropout = p_dropout
|
156 |
+
self.window_size = window_size
|
157 |
+
self.heads_share = heads_share
|
158 |
+
self.block_length = block_length
|
159 |
+
self.proximal_bias = proximal_bias
|
160 |
+
self.proximal_init = proximal_init
|
161 |
+
self.attn = None
|
162 |
+
|
163 |
+
self.k_channels = channels // n_heads
|
164 |
+
self.conv_q = nn.Conv1d(channels, channels, 1)
|
165 |
+
self.conv_k = nn.Conv1d(channels, channels, 1)
|
166 |
+
self.conv_v = nn.Conv1d(channels, channels, 1)
|
167 |
+
self.conv_o = nn.Conv1d(channels, out_channels, 1)
|
168 |
+
self.drop = nn.Dropout(p_dropout)
|
169 |
+
|
170 |
+
if window_size is not None:
|
171 |
+
n_heads_rel = 1 if heads_share else n_heads
|
172 |
+
rel_stddev = self.k_channels**-0.5
|
173 |
+
self.emb_rel_k = nn.Parameter(torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) * rel_stddev)
|
174 |
+
self.emb_rel_v = nn.Parameter(torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) * rel_stddev)
|
175 |
+
|
176 |
+
nn.init.xavier_uniform_(self.conv_q.weight)
|
177 |
+
nn.init.xavier_uniform_(self.conv_k.weight)
|
178 |
+
nn.init.xavier_uniform_(self.conv_v.weight)
|
179 |
+
if proximal_init:
|
180 |
+
with torch.no_grad():
|
181 |
+
self.conv_k.weight.copy_(self.conv_q.weight)
|
182 |
+
self.conv_k.bias.copy_(self.conv_q.bias)
|
183 |
+
|
184 |
+
def forward(self, x, c, attn_mask=None):
|
185 |
+
q = self.conv_q(x)
|
186 |
+
k = self.conv_k(c)
|
187 |
+
v = self.conv_v(c)
|
188 |
+
|
189 |
+
x, self.attn = self.attention(q, k, v, mask=attn_mask)
|
190 |
+
|
191 |
+
x = self.conv_o(x)
|
192 |
+
return x
|
193 |
+
|
194 |
+
def attention(self, query, key, value, mask=None):
|
195 |
+
# reshape [b, d, t] -> [b, n_h, t, d_k]
|
196 |
+
b, d, t_s, t_t = (*key.size(), query.size(2))
|
197 |
+
query = query.view(b, self.n_heads, self.k_channels, t_t).transpose(2, 3)
|
198 |
+
key = key.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
|
199 |
+
value = value.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
|
200 |
+
|
201 |
+
scores = torch.matmul(query / math.sqrt(self.k_channels), key.transpose(-2, -1))
|
202 |
+
if self.window_size is not None:
|
203 |
+
assert t_s == t_t, "Relative attention is only available for self-attention."
|
204 |
+
key_relative_embeddings = self._get_relative_embeddings(self.emb_rel_k, t_s)
|
205 |
+
rel_logits = self._matmul_with_relative_keys(query /math.sqrt(self.k_channels), key_relative_embeddings)
|
206 |
+
scores_local = self._relative_position_to_absolute_position(rel_logits)
|
207 |
+
scores = scores + scores_local
|
208 |
+
if self.proximal_bias:
|
209 |
+
assert t_s == t_t, "Proximal bias is only available for self-attention."
|
210 |
+
scores = scores + self._attention_bias_proximal(t_s).to(device=scores.device, dtype=scores.dtype)
|
211 |
+
if mask is not None:
|
212 |
+
scores = scores.masked_fill(mask == 0, -1e4)
|
213 |
+
if self.block_length is not None:
|
214 |
+
assert t_s == t_t, "Local attention is only available for self-attention."
|
215 |
+
block_mask = torch.ones_like(scores).triu(-self.block_length).tril(self.block_length)
|
216 |
+
scores = scores.masked_fill(block_mask == 0, -1e4)
|
217 |
+
p_attn = F.softmax(scores, dim=-1) # [b, n_h, t_t, t_s]
|
218 |
+
p_attn = self.drop(p_attn)
|
219 |
+
output = torch.matmul(p_attn, value)
|
220 |
+
if self.window_size is not None:
|
221 |
+
relative_weights = self._absolute_position_to_relative_position(p_attn)
|
222 |
+
value_relative_embeddings = self._get_relative_embeddings(self.emb_rel_v, t_s)
|
223 |
+
output = output + self._matmul_with_relative_values(relative_weights, value_relative_embeddings)
|
224 |
+
output = output.transpose(2, 3).contiguous().view(b, d, t_t) # [b, n_h, t_t, d_k] -> [b, d, t_t]
|
225 |
+
return output, p_attn
|
226 |
+
|
227 |
+
def _matmul_with_relative_values(self, x, y):
|
228 |
+
"""
|
229 |
+
x: [b, h, l, m]
|
230 |
+
y: [h or 1, m, d]
|
231 |
+
ret: [b, h, l, d]
|
232 |
+
"""
|
233 |
+
ret = torch.matmul(x, y.unsqueeze(0))
|
234 |
+
return ret
|
235 |
+
|
236 |
+
def _matmul_with_relative_keys(self, x, y):
|
237 |
+
"""
|
238 |
+
x: [b, h, l, d]
|
239 |
+
y: [h or 1, m, d]
|
240 |
+
ret: [b, h, l, m]
|
241 |
+
"""
|
242 |
+
ret = torch.matmul(x, y.unsqueeze(0).transpose(-2, -1))
|
243 |
+
return ret
|
244 |
+
|
245 |
+
def _get_relative_embeddings(self, relative_embeddings, length):
|
246 |
+
max_relative_position = 2 * self.window_size + 1
|
247 |
+
# Pad first before slice to avoid using cond ops.
|
248 |
+
pad_length = max(length - (self.window_size + 1), 0)
|
249 |
+
slice_start_position = max((self.window_size + 1) - length, 0)
|
250 |
+
slice_end_position = slice_start_position + 2 * length - 1
|
251 |
+
if pad_length > 0:
|
252 |
+
padded_relative_embeddings = F.pad(
|
253 |
+
relative_embeddings,
|
254 |
+
commons.convert_pad_shape([[0, 0], [pad_length, pad_length], [0, 0]]))
|
255 |
+
else:
|
256 |
+
padded_relative_embeddings = relative_embeddings
|
257 |
+
used_relative_embeddings = padded_relative_embeddings[:,slice_start_position:slice_end_position]
|
258 |
+
return used_relative_embeddings
|
259 |
+
|
260 |
+
def _relative_position_to_absolute_position(self, x):
|
261 |
+
"""
|
262 |
+
x: [b, h, l, 2*l-1]
|
263 |
+
ret: [b, h, l, l]
|
264 |
+
"""
|
265 |
+
batch, heads, length, _ = x.size()
|
266 |
+
# Concat columns of pad to shift from relative to absolute indexing.
|
267 |
+
x = F.pad(x, commons.convert_pad_shape([[0,0],[0,0],[0,0],[0,1]]))
|
268 |
+
|
269 |
+
# Concat extra elements so to add up to shape (len+1, 2*len-1).
|
270 |
+
x_flat = x.view([batch, heads, length * 2 * length])
|
271 |
+
x_flat = F.pad(x_flat, commons.convert_pad_shape([[0,0],[0,0],[0,length-1]]))
|
272 |
+
|
273 |
+
# Reshape and slice out the padded elements.
|
274 |
+
x_final = x_flat.view([batch, heads, length+1, 2*length-1])[:, :, :length, length-1:]
|
275 |
+
return x_final
|
276 |
+
|
277 |
+
def _absolute_position_to_relative_position(self, x):
|
278 |
+
"""
|
279 |
+
x: [b, h, l, l]
|
280 |
+
ret: [b, h, l, 2*l-1]
|
281 |
+
"""
|
282 |
+
batch, heads, length, _ = x.size()
|
283 |
+
# padd along column
|
284 |
+
x = F.pad(x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, length-1]]))
|
285 |
+
x_flat = x.view([batch, heads, length**2 + length*(length -1)])
|
286 |
+
# add 0's in the beginning that will skew the elements after reshape
|
287 |
+
x_flat = F.pad(x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [length, 0]]))
|
288 |
+
x_final = x_flat.view([batch, heads, length, 2*length])[:,:,:,1:]
|
289 |
+
return x_final
|
290 |
+
|
291 |
+
def _attention_bias_proximal(self, length):
|
292 |
+
"""Bias for self-attention to encourage attention to close positions.
|
293 |
+
Args:
|
294 |
+
length: an integer scalar.
|
295 |
+
Returns:
|
296 |
+
a Tensor with shape [1, 1, length, length]
|
297 |
+
"""
|
298 |
+
r = torch.arange(length, dtype=torch.float32)
|
299 |
+
diff = torch.unsqueeze(r, 0) - torch.unsqueeze(r, 1)
|
300 |
+
return torch.unsqueeze(torch.unsqueeze(-torch.log1p(torch.abs(diff)), 0), 0)
|
301 |
+
|
302 |
+
|
303 |
+
class FFN(nn.Module):
|
304 |
+
def __init__(self, in_channels, out_channels, filter_channels, kernel_size, p_dropout=0., activation=None, causal=False):
|
305 |
+
super().__init__()
|
306 |
+
self.in_channels = in_channels
|
307 |
+
self.out_channels = out_channels
|
308 |
+
self.filter_channels = filter_channels
|
309 |
+
self.kernel_size = kernel_size
|
310 |
+
self.p_dropout = p_dropout
|
311 |
+
self.activation = activation
|
312 |
+
self.causal = causal
|
313 |
+
|
314 |
+
if causal:
|
315 |
+
self.padding = self._causal_padding
|
316 |
+
else:
|
317 |
+
self.padding = self._same_padding
|
318 |
+
|
319 |
+
self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size)
|
320 |
+
self.conv_2 = nn.Conv1d(filter_channels, out_channels, kernel_size)
|
321 |
+
self.drop = nn.Dropout(p_dropout)
|
322 |
+
|
323 |
+
def forward(self, x, x_mask):
|
324 |
+
x = self.conv_1(self.padding(x * x_mask))
|
325 |
+
if self.activation == "gelu":
|
326 |
+
x = x * torch.sigmoid(1.702 * x)
|
327 |
+
else:
|
328 |
+
x = torch.relu(x)
|
329 |
+
x = self.drop(x)
|
330 |
+
x = self.conv_2(self.padding(x * x_mask))
|
331 |
+
return x * x_mask
|
332 |
+
|
333 |
+
def _causal_padding(self, x):
|
334 |
+
if self.kernel_size == 1:
|
335 |
+
return x
|
336 |
+
pad_l = self.kernel_size - 1
|
337 |
+
pad_r = 0
|
338 |
+
padding = [[0, 0], [0, 0], [pad_l, pad_r]]
|
339 |
+
x = F.pad(x, commons.convert_pad_shape(padding))
|
340 |
+
return x
|
341 |
+
|
342 |
+
def _same_padding(self, x):
|
343 |
+
if self.kernel_size == 1:
|
344 |
+
return x
|
345 |
+
pad_l = (self.kernel_size - 1) // 2
|
346 |
+
pad_r = self.kernel_size // 2
|
347 |
+
padding = [[0, 0], [0, 0], [pad_l, pad_r]]
|
348 |
+
x = F.pad(x, commons.convert_pad_shape(padding))
|
349 |
+
return x
|
modules/commons.py
ADDED
@@ -0,0 +1,188 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import numpy as np
|
3 |
+
import torch
|
4 |
+
from torch import nn
|
5 |
+
from torch.nn import functional as F
|
6 |
+
|
7 |
+
def slice_pitch_segments(x, ids_str, segment_size=4):
|
8 |
+
ret = torch.zeros_like(x[:, :segment_size])
|
9 |
+
for i in range(x.size(0)):
|
10 |
+
idx_str = ids_str[i]
|
11 |
+
idx_end = idx_str + segment_size
|
12 |
+
ret[i] = x[i, idx_str:idx_end]
|
13 |
+
return ret
|
14 |
+
|
15 |
+
def rand_slice_segments_with_pitch(x, pitch, x_lengths=None, segment_size=4):
|
16 |
+
b, d, t = x.size()
|
17 |
+
if x_lengths is None:
|
18 |
+
x_lengths = t
|
19 |
+
ids_str_max = x_lengths - segment_size + 1
|
20 |
+
ids_str = (torch.rand([b]).to(device=x.device) * ids_str_max).to(dtype=torch.long)
|
21 |
+
ret = slice_segments(x, ids_str, segment_size)
|
22 |
+
ret_pitch = slice_pitch_segments(pitch, ids_str, segment_size)
|
23 |
+
return ret, ret_pitch, ids_str
|
24 |
+
|
25 |
+
def init_weights(m, mean=0.0, std=0.01):
|
26 |
+
classname = m.__class__.__name__
|
27 |
+
if classname.find("Conv") != -1:
|
28 |
+
m.weight.data.normal_(mean, std)
|
29 |
+
|
30 |
+
|
31 |
+
def get_padding(kernel_size, dilation=1):
|
32 |
+
return int((kernel_size*dilation - dilation)/2)
|
33 |
+
|
34 |
+
|
35 |
+
def convert_pad_shape(pad_shape):
|
36 |
+
l = pad_shape[::-1]
|
37 |
+
pad_shape = [item for sublist in l for item in sublist]
|
38 |
+
return pad_shape
|
39 |
+
|
40 |
+
|
41 |
+
def intersperse(lst, item):
|
42 |
+
result = [item] * (len(lst) * 2 + 1)
|
43 |
+
result[1::2] = lst
|
44 |
+
return result
|
45 |
+
|
46 |
+
|
47 |
+
def kl_divergence(m_p, logs_p, m_q, logs_q):
|
48 |
+
"""KL(P||Q)"""
|
49 |
+
kl = (logs_q - logs_p) - 0.5
|
50 |
+
kl += 0.5 * (torch.exp(2. * logs_p) + ((m_p - m_q)**2)) * torch.exp(-2. * logs_q)
|
51 |
+
return kl
|
52 |
+
|
53 |
+
|
54 |
+
def rand_gumbel(shape):
|
55 |
+
"""Sample from the Gumbel distribution, protect from overflows."""
|
56 |
+
uniform_samples = torch.rand(shape) * 0.99998 + 0.00001
|
57 |
+
return -torch.log(-torch.log(uniform_samples))
|
58 |
+
|
59 |
+
|
60 |
+
def rand_gumbel_like(x):
|
61 |
+
g = rand_gumbel(x.size()).to(dtype=x.dtype, device=x.device)
|
62 |
+
return g
|
63 |
+
|
64 |
+
|
65 |
+
def slice_segments(x, ids_str, segment_size=4):
|
66 |
+
ret = torch.zeros_like(x[:, :, :segment_size])
|
67 |
+
for i in range(x.size(0)):
|
68 |
+
idx_str = ids_str[i]
|
69 |
+
idx_end = idx_str + segment_size
|
70 |
+
ret[i] = x[i, :, idx_str:idx_end]
|
71 |
+
return ret
|
72 |
+
|
73 |
+
|
74 |
+
def rand_slice_segments(x, x_lengths=None, segment_size=4):
|
75 |
+
b, d, t = x.size()
|
76 |
+
if x_lengths is None:
|
77 |
+
x_lengths = t
|
78 |
+
ids_str_max = x_lengths - segment_size + 1
|
79 |
+
ids_str = (torch.rand([b]).to(device=x.device) * ids_str_max).to(dtype=torch.long)
|
80 |
+
ret = slice_segments(x, ids_str, segment_size)
|
81 |
+
return ret, ids_str
|
82 |
+
|
83 |
+
|
84 |
+
def rand_spec_segments(x, x_lengths=None, segment_size=4):
|
85 |
+
b, d, t = x.size()
|
86 |
+
if x_lengths is None:
|
87 |
+
x_lengths = t
|
88 |
+
ids_str_max = x_lengths - segment_size
|
89 |
+
ids_str = (torch.rand([b]).to(device=x.device) * ids_str_max).to(dtype=torch.long)
|
90 |
+
ret = slice_segments(x, ids_str, segment_size)
|
91 |
+
return ret, ids_str
|
92 |
+
|
93 |
+
|
94 |
+
def get_timing_signal_1d(
|
95 |
+
length, channels, min_timescale=1.0, max_timescale=1.0e4):
|
96 |
+
position = torch.arange(length, dtype=torch.float)
|
97 |
+
num_timescales = channels // 2
|
98 |
+
log_timescale_increment = (
|
99 |
+
math.log(float(max_timescale) / float(min_timescale)) /
|
100 |
+
(num_timescales - 1))
|
101 |
+
inv_timescales = min_timescale * torch.exp(
|
102 |
+
torch.arange(num_timescales, dtype=torch.float) * -log_timescale_increment)
|
103 |
+
scaled_time = position.unsqueeze(0) * inv_timescales.unsqueeze(1)
|
104 |
+
signal = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], 0)
|
105 |
+
signal = F.pad(signal, [0, 0, 0, channels % 2])
|
106 |
+
signal = signal.view(1, channels, length)
|
107 |
+
return signal
|
108 |
+
|
109 |
+
|
110 |
+
def add_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4):
|
111 |
+
b, channels, length = x.size()
|
112 |
+
signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
|
113 |
+
return x + signal.to(dtype=x.dtype, device=x.device)
|
114 |
+
|
115 |
+
|
116 |
+
def cat_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4, axis=1):
|
117 |
+
b, channels, length = x.size()
|
118 |
+
signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
|
119 |
+
return torch.cat([x, signal.to(dtype=x.dtype, device=x.device)], axis)
|
120 |
+
|
121 |
+
|
122 |
+
def subsequent_mask(length):
|
123 |
+
mask = torch.tril(torch.ones(length, length)).unsqueeze(0).unsqueeze(0)
|
124 |
+
return mask
|
125 |
+
|
126 |
+
|
127 |
+
@torch.jit.script
|
128 |
+
def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels):
|
129 |
+
n_channels_int = n_channels[0]
|
130 |
+
in_act = input_a + input_b
|
131 |
+
t_act = torch.tanh(in_act[:, :n_channels_int, :])
|
132 |
+
s_act = torch.sigmoid(in_act[:, n_channels_int:, :])
|
133 |
+
acts = t_act * s_act
|
134 |
+
return acts
|
135 |
+
|
136 |
+
|
137 |
+
def convert_pad_shape(pad_shape):
|
138 |
+
l = pad_shape[::-1]
|
139 |
+
pad_shape = [item for sublist in l for item in sublist]
|
140 |
+
return pad_shape
|
141 |
+
|
142 |
+
|
143 |
+
def shift_1d(x):
|
144 |
+
x = F.pad(x, convert_pad_shape([[0, 0], [0, 0], [1, 0]]))[:, :, :-1]
|
145 |
+
return x
|
146 |
+
|
147 |
+
|
148 |
+
def sequence_mask(length, max_length=None):
|
149 |
+
if max_length is None:
|
150 |
+
max_length = length.max()
|
151 |
+
x = torch.arange(max_length, dtype=length.dtype, device=length.device)
|
152 |
+
return x.unsqueeze(0) < length.unsqueeze(1)
|
153 |
+
|
154 |
+
|
155 |
+
def generate_path(duration, mask):
|
156 |
+
"""
|
157 |
+
duration: [b, 1, t_x]
|
158 |
+
mask: [b, 1, t_y, t_x]
|
159 |
+
"""
|
160 |
+
device = duration.device
|
161 |
+
|
162 |
+
b, _, t_y, t_x = mask.shape
|
163 |
+
cum_duration = torch.cumsum(duration, -1)
|
164 |
+
|
165 |
+
cum_duration_flat = cum_duration.view(b * t_x)
|
166 |
+
path = sequence_mask(cum_duration_flat, t_y).to(mask.dtype)
|
167 |
+
path = path.view(b, t_x, t_y)
|
168 |
+
path = path - F.pad(path, convert_pad_shape([[0, 0], [1, 0], [0, 0]]))[:, :-1]
|
169 |
+
path = path.unsqueeze(1).transpose(2,3) * mask
|
170 |
+
return path
|
171 |
+
|
172 |
+
|
173 |
+
def clip_grad_value_(parameters, clip_value, norm_type=2):
|
174 |
+
if isinstance(parameters, torch.Tensor):
|
175 |
+
parameters = [parameters]
|
176 |
+
parameters = list(filter(lambda p: p.grad is not None, parameters))
|
177 |
+
norm_type = float(norm_type)
|
178 |
+
if clip_value is not None:
|
179 |
+
clip_value = float(clip_value)
|
180 |
+
|
181 |
+
total_norm = 0
|
182 |
+
for p in parameters:
|
183 |
+
param_norm = p.grad.data.norm(norm_type)
|
184 |
+
total_norm += param_norm.item() ** norm_type
|
185 |
+
if clip_value is not None:
|
186 |
+
p.grad.data.clamp_(min=-clip_value, max=clip_value)
|
187 |
+
total_norm = total_norm ** (1. / norm_type)
|
188 |
+
return total_norm
|
modules/losses.py
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch.nn import functional as F
|
3 |
+
|
4 |
+
import modules.commons as commons
|
5 |
+
|
6 |
+
|
7 |
+
def feature_loss(fmap_r, fmap_g):
|
8 |
+
loss = 0
|
9 |
+
for dr, dg in zip(fmap_r, fmap_g):
|
10 |
+
for rl, gl in zip(dr, dg):
|
11 |
+
rl = rl.float().detach()
|
12 |
+
gl = gl.float()
|
13 |
+
loss += torch.mean(torch.abs(rl - gl))
|
14 |
+
|
15 |
+
return loss * 2
|
16 |
+
|
17 |
+
|
18 |
+
def discriminator_loss(disc_real_outputs, disc_generated_outputs):
|
19 |
+
loss = 0
|
20 |
+
r_losses = []
|
21 |
+
g_losses = []
|
22 |
+
for dr, dg in zip(disc_real_outputs, disc_generated_outputs):
|
23 |
+
dr = dr.float()
|
24 |
+
dg = dg.float()
|
25 |
+
r_loss = torch.mean((1-dr)**2)
|
26 |
+
g_loss = torch.mean(dg**2)
|
27 |
+
loss += (r_loss + g_loss)
|
28 |
+
r_losses.append(r_loss.item())
|
29 |
+
g_losses.append(g_loss.item())
|
30 |
+
|
31 |
+
return loss, r_losses, g_losses
|
32 |
+
|
33 |
+
|
34 |
+
def generator_loss(disc_outputs):
|
35 |
+
loss = 0
|
36 |
+
gen_losses = []
|
37 |
+
for dg in disc_outputs:
|
38 |
+
dg = dg.float()
|
39 |
+
l = torch.mean((1-dg)**2)
|
40 |
+
gen_losses.append(l)
|
41 |
+
loss += l
|
42 |
+
|
43 |
+
return loss, gen_losses
|
44 |
+
|
45 |
+
|
46 |
+
def kl_loss(z_p, logs_q, m_p, logs_p, z_mask):
|
47 |
+
"""
|
48 |
+
z_p, logs_q: [b, h, t_t]
|
49 |
+
m_p, logs_p: [b, h, t_t]
|
50 |
+
"""
|
51 |
+
z_p = z_p.float()
|
52 |
+
logs_q = logs_q.float()
|
53 |
+
m_p = m_p.float()
|
54 |
+
logs_p = logs_p.float()
|
55 |
+
z_mask = z_mask.float()
|
56 |
+
#print(logs_p)
|
57 |
+
kl = logs_p - logs_q - 0.5
|
58 |
+
kl += 0.5 * ((z_p - m_p)**2) * torch.exp(-2. * logs_p)
|
59 |
+
kl = torch.sum(kl * z_mask)
|
60 |
+
l = kl / torch.sum(z_mask)
|
61 |
+
return l
|
modules/mel_processing.py
ADDED
@@ -0,0 +1,112 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import os
|
3 |
+
import random
|
4 |
+
import torch
|
5 |
+
from torch import nn
|
6 |
+
import torch.nn.functional as F
|
7 |
+
import torch.utils.data
|
8 |
+
import numpy as np
|
9 |
+
import librosa
|
10 |
+
import librosa.util as librosa_util
|
11 |
+
from librosa.util import normalize, pad_center, tiny
|
12 |
+
from scipy.signal import get_window
|
13 |
+
from scipy.io.wavfile import read
|
14 |
+
from librosa.filters import mel as librosa_mel_fn
|
15 |
+
|
16 |
+
MAX_WAV_VALUE = 32768.0
|
17 |
+
|
18 |
+
|
19 |
+
def dynamic_range_compression_torch(x, C=1, clip_val=1e-5):
|
20 |
+
"""
|
21 |
+
PARAMS
|
22 |
+
------
|
23 |
+
C: compression factor
|
24 |
+
"""
|
25 |
+
return torch.log(torch.clamp(x, min=clip_val) * C)
|
26 |
+
|
27 |
+
|
28 |
+
def dynamic_range_decompression_torch(x, C=1):
|
29 |
+
"""
|
30 |
+
PARAMS
|
31 |
+
------
|
32 |
+
C: compression factor used to compress
|
33 |
+
"""
|
34 |
+
return torch.exp(x) / C
|
35 |
+
|
36 |
+
|
37 |
+
def spectral_normalize_torch(magnitudes):
|
38 |
+
output = dynamic_range_compression_torch(magnitudes)
|
39 |
+
return output
|
40 |
+
|
41 |
+
|
42 |
+
def spectral_de_normalize_torch(magnitudes):
|
43 |
+
output = dynamic_range_decompression_torch(magnitudes)
|
44 |
+
return output
|
45 |
+
|
46 |
+
|
47 |
+
mel_basis = {}
|
48 |
+
hann_window = {}
|
49 |
+
|
50 |
+
|
51 |
+
def spectrogram_torch(y, n_fft, sampling_rate, hop_size, win_size, center=False):
|
52 |
+
if torch.min(y) < -1.:
|
53 |
+
print('min value is ', torch.min(y))
|
54 |
+
if torch.max(y) > 1.:
|
55 |
+
print('max value is ', torch.max(y))
|
56 |
+
|
57 |
+
global hann_window
|
58 |
+
dtype_device = str(y.dtype) + '_' + str(y.device)
|
59 |
+
wnsize_dtype_device = str(win_size) + '_' + dtype_device
|
60 |
+
if wnsize_dtype_device not in hann_window:
|
61 |
+
hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(dtype=y.dtype, device=y.device)
|
62 |
+
|
63 |
+
y = torch.nn.functional.pad(y.unsqueeze(1), (int((n_fft-hop_size)/2), int((n_fft-hop_size)/2)), mode='reflect')
|
64 |
+
y = y.squeeze(1)
|
65 |
+
|
66 |
+
spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[wnsize_dtype_device],
|
67 |
+
center=center, pad_mode='reflect', normalized=False, onesided=True, return_complex=False)
|
68 |
+
|
69 |
+
spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
|
70 |
+
return spec
|
71 |
+
|
72 |
+
|
73 |
+
def spec_to_mel_torch(spec, n_fft, num_mels, sampling_rate, fmin, fmax):
|
74 |
+
global mel_basis
|
75 |
+
dtype_device = str(spec.dtype) + '_' + str(spec.device)
|
76 |
+
fmax_dtype_device = str(fmax) + '_' + dtype_device
|
77 |
+
if fmax_dtype_device not in mel_basis:
|
78 |
+
mel = librosa_mel_fn(sr=sampling_rate, n_fft=n_fft, n_mels=num_mels, fmin=fmin, fmax=fmax)
|
79 |
+
mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(dtype=spec.dtype, device=spec.device)
|
80 |
+
spec = torch.matmul(mel_basis[fmax_dtype_device], spec)
|
81 |
+
spec = spectral_normalize_torch(spec)
|
82 |
+
return spec
|
83 |
+
|
84 |
+
|
85 |
+
def mel_spectrogram_torch(y, n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax, center=False):
|
86 |
+
if torch.min(y) < -1.:
|
87 |
+
print('min value is ', torch.min(y))
|
88 |
+
if torch.max(y) > 1.:
|
89 |
+
print('max value is ', torch.max(y))
|
90 |
+
|
91 |
+
global mel_basis, hann_window
|
92 |
+
dtype_device = str(y.dtype) + '_' + str(y.device)
|
93 |
+
fmax_dtype_device = str(fmax) + '_' + dtype_device
|
94 |
+
wnsize_dtype_device = str(win_size) + '_' + dtype_device
|
95 |
+
if fmax_dtype_device not in mel_basis:
|
96 |
+
mel = librosa_mel_fn(sr=sampling_rate, n_fft=n_fft, n_mels=num_mels, fmin=fmin, fmax=fmax)
|
97 |
+
mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(dtype=y.dtype, device=y.device)
|
98 |
+
if wnsize_dtype_device not in hann_window:
|
99 |
+
hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(dtype=y.dtype, device=y.device)
|
100 |
+
|
101 |
+
y = torch.nn.functional.pad(y.unsqueeze(1), (int((n_fft-hop_size)/2), int((n_fft-hop_size)/2)), mode='reflect')
|
102 |
+
y = y.squeeze(1)
|
103 |
+
|
104 |
+
spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[wnsize_dtype_device],
|
105 |
+
center=center, pad_mode='reflect', normalized=False, onesided=True, return_complex=False)
|
106 |
+
|
107 |
+
spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
|
108 |
+
|
109 |
+
spec = torch.matmul(mel_basis[fmax_dtype_device], spec)
|
110 |
+
spec = spectral_normalize_torch(spec)
|
111 |
+
|
112 |
+
return spec
|
modules/modules.py
ADDED
@@ -0,0 +1,342 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import copy
|
2 |
+
import math
|
3 |
+
import numpy as np
|
4 |
+
import scipy
|
5 |
+
import torch
|
6 |
+
from torch import nn
|
7 |
+
from torch.nn import functional as F
|
8 |
+
|
9 |
+
from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
|
10 |
+
from torch.nn.utils import weight_norm, remove_weight_norm
|
11 |
+
|
12 |
+
import modules.commons as commons
|
13 |
+
from modules.commons import init_weights, get_padding
|
14 |
+
|
15 |
+
|
16 |
+
LRELU_SLOPE = 0.1
|
17 |
+
|
18 |
+
|
19 |
+
class LayerNorm(nn.Module):
|
20 |
+
def __init__(self, channels, eps=1e-5):
|
21 |
+
super().__init__()
|
22 |
+
self.channels = channels
|
23 |
+
self.eps = eps
|
24 |
+
|
25 |
+
self.gamma = nn.Parameter(torch.ones(channels))
|
26 |
+
self.beta = nn.Parameter(torch.zeros(channels))
|
27 |
+
|
28 |
+
def forward(self, x):
|
29 |
+
x = x.transpose(1, -1)
|
30 |
+
x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps)
|
31 |
+
return x.transpose(1, -1)
|
32 |
+
|
33 |
+
|
34 |
+
class ConvReluNorm(nn.Module):
|
35 |
+
def __init__(self, in_channels, hidden_channels, out_channels, kernel_size, n_layers, p_dropout):
|
36 |
+
super().__init__()
|
37 |
+
self.in_channels = in_channels
|
38 |
+
self.hidden_channels = hidden_channels
|
39 |
+
self.out_channels = out_channels
|
40 |
+
self.kernel_size = kernel_size
|
41 |
+
self.n_layers = n_layers
|
42 |
+
self.p_dropout = p_dropout
|
43 |
+
assert n_layers > 1, "Number of layers should be larger than 0."
|
44 |
+
|
45 |
+
self.conv_layers = nn.ModuleList()
|
46 |
+
self.norm_layers = nn.ModuleList()
|
47 |
+
self.conv_layers.append(nn.Conv1d(in_channels, hidden_channels, kernel_size, padding=kernel_size//2))
|
48 |
+
self.norm_layers.append(LayerNorm(hidden_channels))
|
49 |
+
self.relu_drop = nn.Sequential(
|
50 |
+
nn.ReLU(),
|
51 |
+
nn.Dropout(p_dropout))
|
52 |
+
for _ in range(n_layers-1):
|
53 |
+
self.conv_layers.append(nn.Conv1d(hidden_channels, hidden_channels, kernel_size, padding=kernel_size//2))
|
54 |
+
self.norm_layers.append(LayerNorm(hidden_channels))
|
55 |
+
self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
|
56 |
+
self.proj.weight.data.zero_()
|
57 |
+
self.proj.bias.data.zero_()
|
58 |
+
|
59 |
+
def forward(self, x, x_mask):
|
60 |
+
x_org = x
|
61 |
+
for i in range(self.n_layers):
|
62 |
+
x = self.conv_layers[i](x * x_mask)
|
63 |
+
x = self.norm_layers[i](x)
|
64 |
+
x = self.relu_drop(x)
|
65 |
+
x = x_org + self.proj(x)
|
66 |
+
return x * x_mask
|
67 |
+
|
68 |
+
|
69 |
+
class DDSConv(nn.Module):
|
70 |
+
"""
|
71 |
+
Dialted and Depth-Separable Convolution
|
72 |
+
"""
|
73 |
+
def __init__(self, channels, kernel_size, n_layers, p_dropout=0.):
|
74 |
+
super().__init__()
|
75 |
+
self.channels = channels
|
76 |
+
self.kernel_size = kernel_size
|
77 |
+
self.n_layers = n_layers
|
78 |
+
self.p_dropout = p_dropout
|
79 |
+
|
80 |
+
self.drop = nn.Dropout(p_dropout)
|
81 |
+
self.convs_sep = nn.ModuleList()
|
82 |
+
self.convs_1x1 = nn.ModuleList()
|
83 |
+
self.norms_1 = nn.ModuleList()
|
84 |
+
self.norms_2 = nn.ModuleList()
|
85 |
+
for i in range(n_layers):
|
86 |
+
dilation = kernel_size ** i
|
87 |
+
padding = (kernel_size * dilation - dilation) // 2
|
88 |
+
self.convs_sep.append(nn.Conv1d(channels, channels, kernel_size,
|
89 |
+
groups=channels, dilation=dilation, padding=padding
|
90 |
+
))
|
91 |
+
self.convs_1x1.append(nn.Conv1d(channels, channels, 1))
|
92 |
+
self.norms_1.append(LayerNorm(channels))
|
93 |
+
self.norms_2.append(LayerNorm(channels))
|
94 |
+
|
95 |
+
def forward(self, x, x_mask, g=None):
|
96 |
+
if g is not None:
|
97 |
+
x = x + g
|
98 |
+
for i in range(self.n_layers):
|
99 |
+
y = self.convs_sep[i](x * x_mask)
|
100 |
+
y = self.norms_1[i](y)
|
101 |
+
y = F.gelu(y)
|
102 |
+
y = self.convs_1x1[i](y)
|
103 |
+
y = self.norms_2[i](y)
|
104 |
+
y = F.gelu(y)
|
105 |
+
y = self.drop(y)
|
106 |
+
x = x + y
|
107 |
+
return x * x_mask
|
108 |
+
|
109 |
+
|
110 |
+
class WN(torch.nn.Module):
|
111 |
+
def __init__(self, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=0, p_dropout=0):
|
112 |
+
super(WN, self).__init__()
|
113 |
+
assert(kernel_size % 2 == 1)
|
114 |
+
self.hidden_channels =hidden_channels
|
115 |
+
self.kernel_size = kernel_size,
|
116 |
+
self.dilation_rate = dilation_rate
|
117 |
+
self.n_layers = n_layers
|
118 |
+
self.gin_channels = gin_channels
|
119 |
+
self.p_dropout = p_dropout
|
120 |
+
|
121 |
+
self.in_layers = torch.nn.ModuleList()
|
122 |
+
self.res_skip_layers = torch.nn.ModuleList()
|
123 |
+
self.drop = nn.Dropout(p_dropout)
|
124 |
+
|
125 |
+
if gin_channels != 0:
|
126 |
+
cond_layer = torch.nn.Conv1d(gin_channels, 2*hidden_channels*n_layers, 1)
|
127 |
+
self.cond_layer = torch.nn.utils.weight_norm(cond_layer, name='weight')
|
128 |
+
|
129 |
+
for i in range(n_layers):
|
130 |
+
dilation = dilation_rate ** i
|
131 |
+
padding = int((kernel_size * dilation - dilation) / 2)
|
132 |
+
in_layer = torch.nn.Conv1d(hidden_channels, 2*hidden_channels, kernel_size,
|
133 |
+
dilation=dilation, padding=padding)
|
134 |
+
in_layer = torch.nn.utils.weight_norm(in_layer, name='weight')
|
135 |
+
self.in_layers.append(in_layer)
|
136 |
+
|
137 |
+
# last one is not necessary
|
138 |
+
if i < n_layers - 1:
|
139 |
+
res_skip_channels = 2 * hidden_channels
|
140 |
+
else:
|
141 |
+
res_skip_channels = hidden_channels
|
142 |
+
|
143 |
+
res_skip_layer = torch.nn.Conv1d(hidden_channels, res_skip_channels, 1)
|
144 |
+
res_skip_layer = torch.nn.utils.weight_norm(res_skip_layer, name='weight')
|
145 |
+
self.res_skip_layers.append(res_skip_layer)
|
146 |
+
|
147 |
+
def forward(self, x, x_mask, g=None, **kwargs):
|
148 |
+
output = torch.zeros_like(x)
|
149 |
+
n_channels_tensor = torch.IntTensor([self.hidden_channels])
|
150 |
+
|
151 |
+
if g is not None:
|
152 |
+
g = self.cond_layer(g)
|
153 |
+
|
154 |
+
for i in range(self.n_layers):
|
155 |
+
x_in = self.in_layers[i](x)
|
156 |
+
if g is not None:
|
157 |
+
cond_offset = i * 2 * self.hidden_channels
|
158 |
+
g_l = g[:,cond_offset:cond_offset+2*self.hidden_channels,:]
|
159 |
+
else:
|
160 |
+
g_l = torch.zeros_like(x_in)
|
161 |
+
|
162 |
+
acts = commons.fused_add_tanh_sigmoid_multiply(
|
163 |
+
x_in,
|
164 |
+
g_l,
|
165 |
+
n_channels_tensor)
|
166 |
+
acts = self.drop(acts)
|
167 |
+
|
168 |
+
res_skip_acts = self.res_skip_layers[i](acts)
|
169 |
+
if i < self.n_layers - 1:
|
170 |
+
res_acts = res_skip_acts[:,:self.hidden_channels,:]
|
171 |
+
x = (x + res_acts) * x_mask
|
172 |
+
output = output + res_skip_acts[:,self.hidden_channels:,:]
|
173 |
+
else:
|
174 |
+
output = output + res_skip_acts
|
175 |
+
return output * x_mask
|
176 |
+
|
177 |
+
def remove_weight_norm(self):
|
178 |
+
if self.gin_channels != 0:
|
179 |
+
torch.nn.utils.remove_weight_norm(self.cond_layer)
|
180 |
+
for l in self.in_layers:
|
181 |
+
torch.nn.utils.remove_weight_norm(l)
|
182 |
+
for l in self.res_skip_layers:
|
183 |
+
torch.nn.utils.remove_weight_norm(l)
|
184 |
+
|
185 |
+
|
186 |
+
class ResBlock1(torch.nn.Module):
|
187 |
+
def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)):
|
188 |
+
super(ResBlock1, self).__init__()
|
189 |
+
self.convs1 = nn.ModuleList([
|
190 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
|
191 |
+
padding=get_padding(kernel_size, dilation[0]))),
|
192 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
|
193 |
+
padding=get_padding(kernel_size, dilation[1]))),
|
194 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[2],
|
195 |
+
padding=get_padding(kernel_size, dilation[2])))
|
196 |
+
])
|
197 |
+
self.convs1.apply(init_weights)
|
198 |
+
|
199 |
+
self.convs2 = nn.ModuleList([
|
200 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
|
201 |
+
padding=get_padding(kernel_size, 1))),
|
202 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
|
203 |
+
padding=get_padding(kernel_size, 1))),
|
204 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
|
205 |
+
padding=get_padding(kernel_size, 1)))
|
206 |
+
])
|
207 |
+
self.convs2.apply(init_weights)
|
208 |
+
|
209 |
+
def forward(self, x, x_mask=None):
|
210 |
+
for c1, c2 in zip(self.convs1, self.convs2):
|
211 |
+
xt = F.leaky_relu(x, LRELU_SLOPE)
|
212 |
+
if x_mask is not None:
|
213 |
+
xt = xt * x_mask
|
214 |
+
xt = c1(xt)
|
215 |
+
xt = F.leaky_relu(xt, LRELU_SLOPE)
|
216 |
+
if x_mask is not None:
|
217 |
+
xt = xt * x_mask
|
218 |
+
xt = c2(xt)
|
219 |
+
x = xt + x
|
220 |
+
if x_mask is not None:
|
221 |
+
x = x * x_mask
|
222 |
+
return x
|
223 |
+
|
224 |
+
def remove_weight_norm(self):
|
225 |
+
for l in self.convs1:
|
226 |
+
remove_weight_norm(l)
|
227 |
+
for l in self.convs2:
|
228 |
+
remove_weight_norm(l)
|
229 |
+
|
230 |
+
|
231 |
+
class ResBlock2(torch.nn.Module):
|
232 |
+
def __init__(self, channels, kernel_size=3, dilation=(1, 3)):
|
233 |
+
super(ResBlock2, self).__init__()
|
234 |
+
self.convs = nn.ModuleList([
|
235 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
|
236 |
+
padding=get_padding(kernel_size, dilation[0]))),
|
237 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
|
238 |
+
padding=get_padding(kernel_size, dilation[1])))
|
239 |
+
])
|
240 |
+
self.convs.apply(init_weights)
|
241 |
+
|
242 |
+
def forward(self, x, x_mask=None):
|
243 |
+
for c in self.convs:
|
244 |
+
xt = F.leaky_relu(x, LRELU_SLOPE)
|
245 |
+
if x_mask is not None:
|
246 |
+
xt = xt * x_mask
|
247 |
+
xt = c(xt)
|
248 |
+
x = xt + x
|
249 |
+
if x_mask is not None:
|
250 |
+
x = x * x_mask
|
251 |
+
return x
|
252 |
+
|
253 |
+
def remove_weight_norm(self):
|
254 |
+
for l in self.convs:
|
255 |
+
remove_weight_norm(l)
|
256 |
+
|
257 |
+
|
258 |
+
class Log(nn.Module):
|
259 |
+
def forward(self, x, x_mask, reverse=False, **kwargs):
|
260 |
+
if not reverse:
|
261 |
+
y = torch.log(torch.clamp_min(x, 1e-5)) * x_mask
|
262 |
+
logdet = torch.sum(-y, [1, 2])
|
263 |
+
return y, logdet
|
264 |
+
else:
|
265 |
+
x = torch.exp(x) * x_mask
|
266 |
+
return x
|
267 |
+
|
268 |
+
|
269 |
+
class Flip(nn.Module):
|
270 |
+
def forward(self, x, *args, reverse=False, **kwargs):
|
271 |
+
x = torch.flip(x, [1])
|
272 |
+
if not reverse:
|
273 |
+
logdet = torch.zeros(x.size(0)).to(dtype=x.dtype, device=x.device)
|
274 |
+
return x, logdet
|
275 |
+
else:
|
276 |
+
return x
|
277 |
+
|
278 |
+
|
279 |
+
class ElementwiseAffine(nn.Module):
|
280 |
+
def __init__(self, channels):
|
281 |
+
super().__init__()
|
282 |
+
self.channels = channels
|
283 |
+
self.m = nn.Parameter(torch.zeros(channels,1))
|
284 |
+
self.logs = nn.Parameter(torch.zeros(channels,1))
|
285 |
+
|
286 |
+
def forward(self, x, x_mask, reverse=False, **kwargs):
|
287 |
+
if not reverse:
|
288 |
+
y = self.m + torch.exp(self.logs) * x
|
289 |
+
y = y * x_mask
|
290 |
+
logdet = torch.sum(self.logs * x_mask, [1,2])
|
291 |
+
return y, logdet
|
292 |
+
else:
|
293 |
+
x = (x - self.m) * torch.exp(-self.logs) * x_mask
|
294 |
+
return x
|
295 |
+
|
296 |
+
|
297 |
+
class ResidualCouplingLayer(nn.Module):
|
298 |
+
def __init__(self,
|
299 |
+
channels,
|
300 |
+
hidden_channels,
|
301 |
+
kernel_size,
|
302 |
+
dilation_rate,
|
303 |
+
n_layers,
|
304 |
+
p_dropout=0,
|
305 |
+
gin_channels=0,
|
306 |
+
mean_only=False):
|
307 |
+
assert channels % 2 == 0, "channels should be divisible by 2"
|
308 |
+
super().__init__()
|
309 |
+
self.channels = channels
|
310 |
+
self.hidden_channels = hidden_channels
|
311 |
+
self.kernel_size = kernel_size
|
312 |
+
self.dilation_rate = dilation_rate
|
313 |
+
self.n_layers = n_layers
|
314 |
+
self.half_channels = channels // 2
|
315 |
+
self.mean_only = mean_only
|
316 |
+
|
317 |
+
self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1)
|
318 |
+
self.enc = WN(hidden_channels, kernel_size, dilation_rate, n_layers, p_dropout=p_dropout, gin_channels=gin_channels)
|
319 |
+
self.post = nn.Conv1d(hidden_channels, self.half_channels * (2 - mean_only), 1)
|
320 |
+
self.post.weight.data.zero_()
|
321 |
+
self.post.bias.data.zero_()
|
322 |
+
|
323 |
+
def forward(self, x, x_mask, g=None, reverse=False):
|
324 |
+
x0, x1 = torch.split(x, [self.half_channels]*2, 1)
|
325 |
+
h = self.pre(x0) * x_mask
|
326 |
+
h = self.enc(h, x_mask, g=g)
|
327 |
+
stats = self.post(h) * x_mask
|
328 |
+
if not self.mean_only:
|
329 |
+
m, logs = torch.split(stats, [self.half_channels]*2, 1)
|
330 |
+
else:
|
331 |
+
m = stats
|
332 |
+
logs = torch.zeros_like(m)
|
333 |
+
|
334 |
+
if not reverse:
|
335 |
+
x1 = m + x1 * torch.exp(logs) * x_mask
|
336 |
+
x = torch.cat([x0, x1], 1)
|
337 |
+
logdet = torch.sum(logs, [1,2])
|
338 |
+
return x, logdet
|
339 |
+
else:
|
340 |
+
x1 = (x1 - m) * torch.exp(-logs) * x_mask
|
341 |
+
x = torch.cat([x0, x1], 1)
|
342 |
+
return x
|