Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
import os | |
import google.generativeai as genai | |
import gradio as gr | |
import openai | |
from anthropic import Anthropic | |
from openai import OpenAI # Add explicit OpenAI import | |
def get_all_models(): | |
"""Get all available models from the registries.""" | |
return [ | |
"SambaNova: Meta-Llama-3.2-1B-Instruct", | |
"SambaNova: Meta-Llama-3.2-3B-Instruct", | |
"SambaNova: Llama-3.2-11B-Vision-Instruct", | |
"SambaNova: Llama-3.2-90B-Vision-Instruct", | |
"SambaNova: Meta-Llama-3.1-8B-Instruct", | |
"SambaNova: Meta-Llama-3.1-70B-Instruct", | |
"SambaNova: Meta-Llama-3.1-405B-Instruct", | |
"Hyperbolic: Qwen/Qwen2.5-Coder-32B-Instruct", | |
"Hyperbolic: meta-llama/Llama-3.2-3B-Instruct", | |
"Hyperbolic: meta-llama/Meta-Llama-3.1-8B-Instruct", | |
"Hyperbolic: meta-llama/Meta-Llama-3.1-70B-Instruct", | |
"Hyperbolic: meta-llama/Meta-Llama-3-70B-Instruct", | |
"Hyperbolic: NousResearch/Hermes-3-Llama-3.1-70B", | |
"Hyperbolic: Qwen/Qwen2.5-72B-Instruct", | |
"Hyperbolic: deepseek-ai/DeepSeek-V2.5", | |
"Hyperbolic: meta-llama/Meta-Llama-3.1-405B-Instruct", | |
] | |
def generate_discussion_prompt(original_question: str, previous_responses: list[str]) -> str: | |
"""Generate a prompt for models to discuss and build upon previous | |
responses. | |
""" | |
prompt = f"""You are participating in a multi-AI discussion about this question: "{original_question}" | |
Previous responses from other AI models: | |
{chr(10).join(f"- {response}" for response in previous_responses)} | |
Please provide your perspective while: | |
1. Acknowledging key insights from previous responses | |
2. Adding any missing important points | |
3. Respectfully noting if you disagree with anything and explaining why | |
4. Building towards a complete answer | |
Keep your response focused and concise (max 3-4 paragraphs).""" | |
return prompt | |
def generate_consensus_prompt(original_question: str, discussion_history: list[str]) -> str: | |
"""Generate a prompt for final consensus building.""" | |
return f"""Review this multi-AI discussion about: "{original_question}" | |
Discussion history: | |
{chr(10).join(discussion_history)} | |
As a final synthesizer, please: | |
1. Identify the key points where all models agreed | |
2. Explain how any disagreements were resolved | |
3. Present a clear, unified answer that represents our collective best understanding | |
4. Note any remaining uncertainties or caveats | |
Keep the final consensus concise but complete.""" | |
def chat_with_openai(model: str, messages: list[dict], api_key: str | None) -> str: | |
import openai | |
client = openai.OpenAI(api_key=api_key) | |
response = client.chat.completions.create(model=model, messages=messages) | |
return response.choices[0].message.content | |
def chat_with_anthropic(messages: list[dict], api_key: str | None) -> str: | |
"""Chat with Anthropic's Claude model.""" | |
client = Anthropic(api_key=api_key) | |
response = client.messages.create(model="claude-3-sonnet-20240229", messages=messages, max_tokens=1024) | |
return response.content[0].text | |
def chat_with_gemini(messages: list[dict], api_key: str | None) -> str: | |
"""Chat with Gemini Pro model.""" | |
genai.configure(api_key=api_key) | |
model = genai.GenerativeModel("gemini-pro") | |
# Convert messages to Gemini format | |
gemini_messages = [] | |
for msg in messages: | |
role = "user" if msg["role"] == "user" else "model" | |
gemini_messages.append({"role": role, "parts": [msg["content"]]}) | |
response = model.generate_content([m["parts"][0] for m in gemini_messages]) | |
return response.text | |
def chat_with_sambanova( | |
messages: list[dict], api_key: str | None, model_name: str = "Llama-3.2-90B-Vision-Instruct" | |
) -> str: | |
"""Chat with SambaNova's models using their OpenAI-compatible API.""" | |
client = openai.OpenAI( | |
api_key=api_key, | |
base_url="https://api.sambanova.ai/v1", | |
) | |
response = client.chat.completions.create( | |
model=model_name, | |
messages=messages, | |
temperature=0.1, | |
top_p=0.1, # Use the specific model name passed in | |
) | |
return response.choices[0].message.content | |
def chat_with_hyperbolic( | |
messages: list[dict], api_key: str | None, model_name: str = "Qwen/Qwen2.5-Coder-32B-Instruct" | |
) -> str: | |
"""Chat with Hyperbolic's models using their OpenAI-compatible API.""" | |
client = OpenAI(api_key=api_key, base_url="https://api.hyperbolic.xyz/v1") | |
# Add system message to the start of the messages list | |
full_messages = [ | |
{"role": "system", "content": "You are a helpful assistant. Be descriptive and clear."}, | |
*messages, | |
] | |
response = client.chat.completions.create( | |
model=model_name, # Use the specific model name passed in | |
messages=full_messages, | |
temperature=0.7, | |
max_tokens=1024, | |
) | |
return response.choices[0].message.content | |
def multi_model_consensus( | |
question: str, selected_models: list[str], rounds: int = 3, progress: gr.Progress = gr.Progress() | |
) -> list[tuple[str, str]]: | |
if not selected_models: | |
raise gr.Error("Please select at least one model to chat with.") | |
chat_history = [] | |
progress(0, desc="Getting responses from all models...") | |
# Get responses from all models in parallel | |
for i, model in enumerate(selected_models): | |
provider, model_name = model.split(": ", 1) | |
progress((i + 1) / len(selected_models), desc=f"Getting response from {model}...") | |
try: | |
if provider == "Anthropic": | |
api_key = os.getenv("ANTHROPIC_API_KEY") | |
response = chat_with_anthropic(messages=[{"role": "user", "content": question}], api_key=api_key) | |
elif provider == "SambaNova": | |
api_key = os.getenv("SAMBANOVA_API_KEY") | |
response = chat_with_sambanova( | |
messages=[ | |
{"role": "system", "content": "You are a helpful assistant"}, | |
{"role": "user", "content": question}, | |
], | |
api_key=api_key, | |
model_name=model_name, | |
) | |
elif provider == "Hyperbolic": | |
api_key = os.getenv("HYPERBOLIC_API_KEY") | |
response = chat_with_hyperbolic( | |
messages=[{"role": "user", "content": question}], | |
api_key=api_key, | |
model_name=model_name, | |
) | |
else: # Gemini | |
api_key = os.getenv("GEMINI_API_KEY") | |
response = chat_with_gemini(messages=[{"role": "user", "content": question}], api_key=api_key) | |
chat_history.append((model, response)) | |
except Exception as e: | |
chat_history.append((model, f"Error: {e!s}")) | |
progress(1.0, desc="Done!") | |
return chat_history | |
with gr.Blocks() as demo: | |
gr.Markdown("# Model Response Comparison") | |
gr.Markdown("""Select multiple models to compare their responses""") | |
with gr.Row(): | |
with gr.Column(): | |
model_selector = gr.Dropdown( | |
choices=get_all_models(), | |
multiselect=True, | |
label="Select Models", | |
info="Choose models to compare", | |
value=["SambaNova: Llama-3.2-90B-Vision-Instruct", "Hyperbolic: Qwen/Qwen2.5-Coder-32B-Instruct"], | |
) | |
chatbot = gr.Chatbot(height=600, label="Model Responses") | |
msg = gr.Textbox(label="Prompt", placeholder="Ask a question to compare model responses...") | |
def respond(message, selected_models): | |
chat_history = multi_model_consensus(message, selected_models, rounds=1) | |
return chat_history | |
msg.submit(respond, [msg, model_selector], [chatbot]) | |
for fn in demo.fns.values(): | |
fn.api_name = False | |
if __name__ == "__main__": | |
demo.launch() | |