File size: 9,663 Bytes
638c90a
8b6ea51
638c90a
b7f4ac5
8b6ea51
011ac1b
b7f4ac5
011ac1b
b7f4ac5
011ac1b
 
b7f4ac5
638c90a
 
b79e6f7
 
 
 
 
011ac1b
 
 
 
 
 
 
 
 
 
 
 
 
b79e6f7
 
b7f4ac5
 
011ac1b
8b6ea51
b79e6f7
011ac1b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
107476b
011ac1b
 
 
 
 
 
 
 
 
b79e6f7
011ac1b
 
b79e6f7
 
011ac1b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c1f40ba
011ac1b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b79e6f7
 
011ac1b
 
 
 
 
 
b79e6f7
 
011ac1b
 
 
 
 
b79e6f7
011ac1b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b79e6f7
011ac1b
b79e6f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
011ac1b
 
 
 
b79e6f7
 
 
 
 
 
 
 
 
 
 
 
011ac1b
b79e6f7
 
 
 
 
011ac1b
 
 
 
 
 
 
 
8b6ea51
b7f4ac5
b79e6f7
011ac1b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b79e6f7
 
011ac1b
b79e6f7
 
011ac1b
 
 
 
 
b79e6f7
011ac1b
 
b79e6f7
011ac1b
b7f4ac5
 
 
 
638c90a
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
<!DOCTYPE html>
<html lang="en">
<head>
    <meta charset="UTF-8">
    <meta name="viewport" content="width=device-width, initial-scale=1.0">
    <title>Enhanced Three.js Flight Simulator</title>
    <style>
        body { margin: 0; background-color: #000; overflow: hidden; }
        canvas { display: block; }
        #controls { position: absolute; top: 10px; left: 10px; background: rgba(255,255,255,0.7); padding: 10px; font-family: monospace; font-size: 14px; }
        #instruments { position: absolute; top: 10px; right: 10px; background: rgba(0,0,0,0.7); color: #0F0; padding: 10px; font-family: monospace; font-size: 14px; }
    </style>
</head>
<body>

<div id="controls">
    <b>Flight Simulator Controls:</b><br>
    W / ↑ : Pitch Up (Climb)<br>
    S / ↓ : Pitch Down (Dive)<br>
    A / ← : Yaw Left (Turn Left, but use roll for real turns)<br>
    D / β†’ : Yaw Right (Turn Right, but use roll for real turns)<br>
    Q / E : Roll Left/Right (Bank for turns)<br>
    ↑↑ Speed up (gradually)<br>
    ↓↓ Slow down (gradually)<br>
    Mouse Look (drag to change view direction)
</div>

<div id="instruments">
    <b>Flight Instruments:</b><br>
    Alt: <span id="altimeter">0 ft</span><br>
    Airspeed: <span id="airspeed">0 kts</span><br>
    Heading: <span id="heading">0Β°</span>
</div>

<script src="https://cdnjs.cloudflare.com/ajax/libs/three.js/r128/three.min.js"></script>
<script>
// Scene
let scene = new THREE.Scene();

// Skybox (gradient sky)
let skyGeom = new THREE.SphereGeometry(500, 32, 32);
let skyMat = new THREE.ShaderMaterial({
    vertexShader: `
        varying vec3 vWorldPosition;
        void main() {
            vec4 worldPosition = modelMatrix * vec4(position, 1.0);
            vWorldPosition = worldPosition.xyz;
            gl_Position = projectionMatrix * modelViewMatrix * vec4(position, 1.0);
        }
    `,
    fragmentShader: `
        varying vec3 vWorldPosition;
        void main() {
            float heightFactor = (vWorldPosition.y + 250.0) / 500.0;
            heightFactor = clamp(heightFactor, 0.0, 1.0);
            vec3 topColor = vec3(0.1, 0.4, 0.8); // Light blue
            vec3 bottomColor = vec3(0.8, 0.6, 0.2); // Light brown
            gl_FragColor = vec4(mix(bottomColor, topColor, heightFactor), 1.0);
        }
    `,
    side: THREE.BackSide
});
let sky = new THREE.Mesh(skyGeom, skyMat);
scene.add(sky);

// Ground (simple hills)
let groundGeom = new THREE.PlaneGeometry(200, 200, 64, 64);
for (let i = 0; i < groundGeom.attributes.position.count; i++) {
    let x = groundGeom.attributes.position.getX(i);
    let z = groundGeom.attributes.position.getZ(i);
    let y = Math.sin(x * 0.1) * Math.cos(z * 0.1) * 5.0; // Simple hills
    groundGeom.attributes.position.setY(i, y);
}
let groundMat = new THREE.MeshLambertMaterial({ color: 0x228B22 }); // Forest green
let ground = new THREE.Mesh(groundGeom, groundMat);
ground.rotation.x = -Math.PI / 2;
ground.receiveShadow = true;
scene.add(ground);

// Airplane (slightly nicer mesh)
let planeGeom = new THREE.Group();
let fuselageGeom = new THREE.BoxGeometry(2, 0.4, 6);
let fuselageMat = new THREE.MeshLambertMaterial({ color: 0xFFFFFF });
let fuselage = new THREE.Mesh(fuselageGeom, fuselageMat);
fuselage.castShadow = true;
let wingGeom = new THREE.BufferGeometry();
const wingVertices = new Float32Array([
    -2, 0, 1,  2, 0, 1,  2, 0, -2,
    -2, 0, 1,  2, 0, -2, -2, 0, -2,
]);
let posAttr = new THREE.BufferAttribute(wingVertices, 3);
wingGeom.setAttribute('position', posAttr);
let wingMat = new THREE.MeshLambertMaterial({ color: 0xFFFFFF });
let wingLeft = new THREE.Mesh(wingGeom, wingMat);
wingLeft.position.x = -0.5;
wingLeft.castShadow = true;
let wingRight = wingLeft.clone();
wingRight.position.x = 0.5;
let tailGeom = new THREE.BufferGeometry();
const tailVertices = new Float32Array([
    0, 0.5, -3,  -0.5, 0, -3,  0.5, 0, -3
]);
let tailAttr = new THREE.BufferAttribute(tailVertices, 3);
tailGeom.setAttribute('position', tailAttr);
let tailMat = new THREE.MeshLambertMaterial({ color: 0xFFFFFF });
let tail = new THREE.Mesh(tailGeom, tailMat);
tail.castShadow = true;
planeGeom.add(fuselage);
planeGeom.add(wingLeft);
planeGeom.add(wingRight);
planeGeom.add(tail);
scene.add(planeGeom);

// Camera
let camera = new THREE.PerspectiveCamera(75, window.innerWidth / window.innerHeight, 0.1, 1000);
planeGeom.add(camera);
camera.position.y = 1.5;
camera.position.z = 2;

// Lighting
let ambientLight = new THREE.AmbientLight(0x333333);
scene.add(ambientLight);
let dirLight = new THREE.DirectionalLight(0xFFFFFF, 0.8);
dirLight.position.set(10, 20, 10);
dirLight.castShadow = true;
dirLight.shadow.mapSize.width = 2048;
dirLight.shadow.mapSize.height = 2048;
dirLight.shadow.camera.near = 1;
dirLight.shadow.camera.far = 100;
scene.add(dirLight);

// Renderer
let renderer = new THREE.WebGLRenderer({ antialias: true });
renderer.setSize(window.innerWidth, window.innerHeight);
renderer.shadowMap.enabled = true;
document.body.appendChild(renderer.domElement);

// Flight dynamics
let pitch = 0; // radians
let yaw = 0;
let roll = 0;
let velocity = new THREE.Vector3(0, 0, 0); // m/s
let airspeed = 0; // knots
let altitude = 0; // meters
let heading = 0; // degrees
let liftForce = 0;
let dragForce = 0;
let gravity = new THREE.Vector3(0, -9.81, 0); // m/sΒ²
let mass = 1000; // kg (just a number)
let wingLiftCoefficient = 10.0; // Made-up lift coeff
let dragCoefficient = 0.5; // Parasitic drag
let maxStallAngle = Math.PI / 6; // 30 degrees

// Controls state
let keys = {
    w: false, s: false, a: false, d: false, q: false, e: false
};
document.addEventListener('keydown', (e) => {
    switch (e.key) {
        case 'w': case 'ArrowUp': keys.w = true; break;
        case 's': case 'ArrowDown': keys.s = true; break;
        case 'a': case 'ArrowLeft': keys.a = true; break;
        case 'd': case 'ArrowRight': keys.d = true; break;
        case 'q': keys.q = true; break;
        case 'e': keys.e = true; break;
    }
});
document.addEventListener('keyup', (e) => {
    switch (e.key) {
        case 'w': case 'ArrowUp': keys.w = false; break;
        case 's': case 'ArrowDown': keys.s = false; break;
        case 'a': case 'ArrowLeft': keys.a = false; break;
        case 'd': case 'ArrowRight': keys.d = false; break;
        case 'q': keys.q = false; break;
        case 'e': keys.e = false; break;
    }
});

// Mouse look
let mouseDown = false;
let lastMouseX, lastMouseY;
let sensitivity = 0.005;
document.addEventListener('mousedown', (e) => { 
    mouseDown = true; 
    lastMouseX = e.clientX; 
    lastMouseY = e.clientY; 
});
document.addEventListener('mouseup', () => mouseDown = false);
document.addEventListener('mousemove', (e) => {
    if (mouseDown) {
        let dx = e.clientX - lastMouseX;
        let dy = e.clientY - lastMouseY;
        yaw -= dx * sensitivity;
        pitch -= dy * sensitivity;
        pitch = Math.max(-Math.PI/2, Math.min(Math.PI/2, pitch));
        lastMouseX = e.clientX;
        lastMouseY = e.clientY;
    }
});

// Update instruments display
function updateInstruments() {
    document.getElementById('altimeter').innerText = Math.round(altitude * 3.28084) + ' ft'; // meters to feet
    document.getElementById('airspeed').innerText = Math.round(airspeed) + ' kts';
    document.getElementById('heading').innerText = Math.round(THREE.Math.radToDeg(yaw)) % 360 + 'Β°';
}

// Main loop
function animate() {
    requestAnimationFrame(animate);

    // Aerodynamics
    let velocityDir = new THREE.Vector3(0, 0, -1); // Plane's forward in local space
    velocityDir.applyQuaternion(planeGeom.quaternion).normalize();
    airspeed = velocity.length() * 1.94384; // m/s to knots (approx)
    let angleOfAttack = Math.acos(velocityDir.dot(new THREE.Vector3(0, 1, 0).applyQuaternion(planeGeom.quaternion)));
    liftForce = wingLiftCoefficient * airspeed * airspeed * Math.sin(angleOfAttack);
    if (angleOfAttack > maxStallAngle) liftForce *= (1 - (angleOfAttack - maxStallAngle) / (Math.PI / 2 - maxStallAngle)); // Stall
    dragForce = dragCoefficient * airspeed * airspeed;

    // Forces
    let lift = new THREE.Vector3(0, liftForce, 0).applyQuaternion(planeGeom.quaternion); // Lift always perpendicular to wings
    let drag = velocityDir.clone().multiplyScalar(-dragForce);
    let totalForce = new THREE.Vector3().add(gravity).add(lift).add(drag).divideScalar(mass);

    // Update velocity & position (Verlet-ish integration)
    velocity.add(totalForce.multiplyScalar(1/60)); // dt ~= 1/60s
    planeGeom.position.add(velocity.clone().multiplyScalar(1/60));

    // Collision with ground (very crude)
    altitude = planeGeom.position.y - groundGeom.attributes.position.getY(0); // approx
    if (altitude < 0) {
        planeGeom.position.y += -altitude; // push back up
        velocity.y = Math.max(0, velocity.y * 0.8); // dampen bounce
    }

    // Controls
    if (keys.w) pitch -= 0.005;
    if (keys.s) pitch += 0.005;
    if (keys.a) yaw -= 0.01;
    if (keys.d) yaw += 0.01;
    if (keys.q) roll -= 0.02;
    if (keys.e) roll += 0.02;

    // Limit angles
    pitch = Math.max(-Math.PI/3, Math.min(Math.PI/4, pitch)); // less extreme pitch
    roll = Math.max(-Math.PI/4, Math.min(Math.PI/4, roll));

    // Apply rotations (order matters)
    planeGeom.rotation.order = 'ZXY'; // Roll, Pitch, Yaw (aviation standard)
    planeGeom.rotation.z = roll;
    planeGeom.rotation.x = pitch;
    planeGeom.rotation.y = yaw;

    // Update camera direction (following plane's rotation)
    heading = THREE.Math.radToDeg(yaw) % 360;

    updateInstruments();
    renderer.render(scene, camera);
}
animate();
</script>
</body>
</html>