import argparse import time from threading import Thread import gradio as gr import torch from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer import spaces from moondream.hf import LATEST_REVISION, detect_device parser = argparse.ArgumentParser() parser.add_argument("--cpu", action="store_true") args = parser.parse_args() if args.cpu: device = torch.device("cpu") dtype = torch.float32 else: device, dtype = detect_device() if device != torch.device("cpu"): print("Using device:", device) print("Using dtype:", dtype) print("If you run into issues, pass the `--cpu` flag to this script.") print() model_id = "vikhyatk/moondream2" tokenizer = AutoTokenizer.from_pretrained(model_id, revision=LATEST_REVISION) moondream = AutoModelForCausalLM.from_pretrained( model_id, trust_remote_code=True, revision=LATEST_REVISION ).to(device=device, dtype=dtype) moondream.eval() @spaces.GPU(duration=10) def answer_question(img, prompt): image_embeds = moondream.encode_image(img) streamer = TextIteratorStreamer(tokenizer, skip_special_tokens=True) thread = Thread( target=moondream.answer_question, kwargs={ "image_embeds": image_embeds, "question": prompt, "tokenizer": tokenizer, "streamer": streamer, }, ) thread.start() buffer = "" for new_text in streamer: buffer += new_text yield buffer with gr.Blocks() as demo: gr.Markdown( """ # See For Me : Real-time Video Assistance for the Visually Impaired using DL The "See For Me" web application is designed to support visually challenged individuals by enhancing their ability to navigate and interact with their environment. Leveraging advancements in machine learning (ML) and deep learning (DL), the project aims to provide real-time visual assistance, enabling users to access and understand textual information in their surroundings. """ ) gr.HTML( """ """ ) with gr.Row(): prompt = gr.Textbox( label="Prompt", value="What's going on? Respond with a single sentence.", interactive=True, ) with gr.Row(): img = gr.Image(type="pil", label="Upload an Image", streaming=True) output = gr.Markdown(elem_classes=["md_output"]) latest_img = None latest_prompt = prompt.value @img.change(inputs=[img]) def img_change(img): global latest_img latest_img = img @prompt.change(inputs=[prompt]) def prompt_change(prompt): global latest_prompt latest_prompt = prompt @demo.load(outputs=[output]) def live_video(): while True: if latest_img is None: time.sleep(7) else: for text in answer_question(latest_img, latest_prompt): if len(text) > 0: yield text time.sleep(3) demo.queue().launch(debug=True, share=True)