Spaces:
Sleeping
Sleeping
alanbarret
commited on
Commit
·
87a0be7
1
Parent(s):
b415fbe
Implement initial project structure and setup
Browse files- .gradio/certificate.pem +31 -0
- app.py +194 -0
- models/rugai_m_v2.pt +3 -0
- requirements.txt +6 -0
.gradio/certificate.pem
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
-----BEGIN CERTIFICATE-----
|
2 |
+
MIIFazCCA1OgAwIBAgIRAIIQz7DSQONZRGPgu2OCiwAwDQYJKoZIhvcNAQELBQAw
|
3 |
+
TzELMAkGA1UEBhMCVVMxKTAnBgNVBAoTIEludGVybmV0IFNlY3VyaXR5IFJlc2Vh
|
4 |
+
cmNoIEdyb3VwMRUwEwYDVQQDEwxJU1JHIFJvb3QgWDEwHhcNMTUwNjA0MTEwNDM4
|
5 |
+
WhcNMzUwNjA0MTEwNDM4WjBPMQswCQYDVQQGEwJVUzEpMCcGA1UEChMgSW50ZXJu
|
6 |
+
ZXQgU2VjdXJpdHkgUmVzZWFyY2ggR3JvdXAxFTATBgNVBAMTDElTUkcgUm9vdCBY
|
7 |
+
MTCCAiIwDQYJKoZIhvcNAQEBBQADggIPADCCAgoCggIBAK3oJHP0FDfzm54rVygc
|
8 |
+
h77ct984kIxuPOZXoHj3dcKi/vVqbvYATyjb3miGbESTtrFj/RQSa78f0uoxmyF+
|
9 |
+
0TM8ukj13Xnfs7j/EvEhmkvBioZxaUpmZmyPfjxwv60pIgbz5MDmgK7iS4+3mX6U
|
10 |
+
A5/TR5d8mUgjU+g4rk8Kb4Mu0UlXjIB0ttov0DiNewNwIRt18jA8+o+u3dpjq+sW
|
11 |
+
T8KOEUt+zwvo/7V3LvSye0rgTBIlDHCNAymg4VMk7BPZ7hm/ELNKjD+Jo2FR3qyH
|
12 |
+
B5T0Y3HsLuJvW5iB4YlcNHlsdu87kGJ55tukmi8mxdAQ4Q7e2RCOFvu396j3x+UC
|
13 |
+
B5iPNgiV5+I3lg02dZ77DnKxHZu8A/lJBdiB3QW0KtZB6awBdpUKD9jf1b0SHzUv
|
14 |
+
KBds0pjBqAlkd25HN7rOrFleaJ1/ctaJxQZBKT5ZPt0m9STJEadao0xAH0ahmbWn
|
15 |
+
OlFuhjuefXKnEgV4We0+UXgVCwOPjdAvBbI+e0ocS3MFEvzG6uBQE3xDk3SzynTn
|
16 |
+
jh8BCNAw1FtxNrQHusEwMFxIt4I7mKZ9YIqioymCzLq9gwQbooMDQaHWBfEbwrbw
|
17 |
+
qHyGO0aoSCqI3Haadr8faqU9GY/rOPNk3sgrDQoo//fb4hVC1CLQJ13hef4Y53CI
|
18 |
+
rU7m2Ys6xt0nUW7/vGT1M0NPAgMBAAGjQjBAMA4GA1UdDwEB/wQEAwIBBjAPBgNV
|
19 |
+
HRMBAf8EBTADAQH/MB0GA1UdDgQWBBR5tFnme7bl5AFzgAiIyBpY9umbbjANBgkq
|
20 |
+
hkiG9w0BAQsFAAOCAgEAVR9YqbyyqFDQDLHYGmkgJykIrGF1XIpu+ILlaS/V9lZL
|
21 |
+
ubhzEFnTIZd+50xx+7LSYK05qAvqFyFWhfFQDlnrzuBZ6brJFe+GnY+EgPbk6ZGQ
|
22 |
+
3BebYhtF8GaV0nxvwuo77x/Py9auJ/GpsMiu/X1+mvoiBOv/2X/qkSsisRcOj/KK
|
23 |
+
NFtY2PwByVS5uCbMiogziUwthDyC3+6WVwW6LLv3xLfHTjuCvjHIInNzktHCgKQ5
|
24 |
+
ORAzI4JMPJ+GslWYHb4phowim57iaztXOoJwTdwJx4nLCgdNbOhdjsnvzqvHu7Ur
|
25 |
+
TkXWStAmzOVyyghqpZXjFaH3pO3JLF+l+/+sKAIuvtd7u+Nxe5AW0wdeRlN8NwdC
|
26 |
+
jNPElpzVmbUq4JUagEiuTDkHzsxHpFKVK7q4+63SM1N95R1NbdWhscdCb+ZAJzVc
|
27 |
+
oyi3B43njTOQ5yOf+1CceWxG1bQVs5ZufpsMljq4Ui0/1lvh+wjChP4kqKOJ2qxq
|
28 |
+
4RgqsahDYVvTH9w7jXbyLeiNdd8XM2w9U/t7y0Ff/9yi0GE44Za4rF2LN9d11TPA
|
29 |
+
mRGunUHBcnWEvgJBQl9nJEiU0Zsnvgc/ubhPgXRR4Xq37Z0j4r7g1SgEEzwxA57d
|
30 |
+
emyPxgcYxn/eR44/KJ4EBs+lVDR3veyJm+kXQ99b21/+jh5Xos1AnX5iItreGCc=
|
31 |
+
-----END CERTIFICATE-----
|
app.py
ADDED
@@ -0,0 +1,194 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from ultralytics import YOLO
|
3 |
+
import cv2
|
4 |
+
import numpy as np
|
5 |
+
from PIL import Image
|
6 |
+
from sklearn.cluster import DBSCAN
|
7 |
+
|
8 |
+
# Load the YOLO model
|
9 |
+
model = YOLO('models/rugai_m_v2.pt')
|
10 |
+
|
11 |
+
def remove_overlapping_boxes(boxes, iou_threshold=0.3):
|
12 |
+
"""Remove overlapping boxes using IoU threshold."""
|
13 |
+
if not boxes:
|
14 |
+
return []
|
15 |
+
|
16 |
+
# Convert boxes to numpy array
|
17 |
+
boxes = np.array(boxes)
|
18 |
+
|
19 |
+
# Calculate areas
|
20 |
+
areas = (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1])
|
21 |
+
|
22 |
+
# Sort by area (largest first)
|
23 |
+
indices = np.argsort(areas)[::-1]
|
24 |
+
|
25 |
+
keep = []
|
26 |
+
while indices.size > 0:
|
27 |
+
i = indices[0]
|
28 |
+
keep.append(i)
|
29 |
+
|
30 |
+
# Calculate IoU with remaining boxes
|
31 |
+
xx1 = np.maximum(boxes[i, 0], boxes[indices[1:], 0])
|
32 |
+
yy1 = np.maximum(boxes[i, 1], boxes[indices[1:], 1])
|
33 |
+
xx2 = np.minimum(boxes[i, 2], boxes[indices[1:], 2])
|
34 |
+
yy2 = np.minimum(boxes[i, 3], boxes[indices[1:], 3])
|
35 |
+
|
36 |
+
w = np.maximum(0, xx2 - xx1)
|
37 |
+
h = np.maximum(0, yy2 - yy1)
|
38 |
+
overlap = (w * h) / areas[indices[1:]]
|
39 |
+
|
40 |
+
# Keep boxes with IoU less than threshold
|
41 |
+
indices = indices[1:][overlap < iou_threshold]
|
42 |
+
|
43 |
+
return keep
|
44 |
+
|
45 |
+
def process_image(image, show_boxes=True):
|
46 |
+
# Convert PIL Image to numpy array if needed
|
47 |
+
if isinstance(image, Image.Image):
|
48 |
+
image = np.array(image)
|
49 |
+
|
50 |
+
# Run inference with specific parameters
|
51 |
+
results = model.predict(image, imgsz=320, conf=0.25, iou=0.9)[0]
|
52 |
+
|
53 |
+
# Lists to store center points of knots
|
54 |
+
centers_x = []
|
55 |
+
centers_y = []
|
56 |
+
|
57 |
+
# Process each result and extract boxes
|
58 |
+
boxes = [] # Store all boxes and their centers
|
59 |
+
height, width = image.shape[:2]
|
60 |
+
|
61 |
+
for box in results.boxes:
|
62 |
+
x1, y1, x2, y2 = box.xyxy[0].cpu().numpy()
|
63 |
+
x1, y1, x2, y2 = map(int, [x1, y1, x2, y2])
|
64 |
+
|
65 |
+
# Calculate box center
|
66 |
+
center_x = (x1 + x2) // 2
|
67 |
+
center_y = (y1 + y2) // 2
|
68 |
+
boxes.append({
|
69 |
+
'coords': (x1, y1, x2, y2),
|
70 |
+
'center': (center_x, center_y)
|
71 |
+
})
|
72 |
+
centers_x.append(center_x)
|
73 |
+
centers_y.append(center_y)
|
74 |
+
|
75 |
+
# Remove overlapping boxes
|
76 |
+
if boxes:
|
77 |
+
box_coords = [box['coords'] for box in boxes]
|
78 |
+
keep_indices = remove_overlapping_boxes(box_coords, iou_threshold=0.3)
|
79 |
+
boxes = [boxes[i] for i in keep_indices]
|
80 |
+
centers_x = [centers_x[i] for i in keep_indices]
|
81 |
+
centers_y = [centers_y[i] for i in keep_indices]
|
82 |
+
|
83 |
+
# Sort centers
|
84 |
+
centers_y.sort()
|
85 |
+
centers_x.sort()
|
86 |
+
|
87 |
+
# Set tolerances based on average knot size
|
88 |
+
if len(boxes) > 0:
|
89 |
+
avg_width = sum((b['coords'][2] - b['coords'][0]) for b in boxes) / len(boxes)
|
90 |
+
avg_height = sum((b['coords'][3] - b['coords'][1]) for b in boxes) / len(boxes)
|
91 |
+
x_tolerance = int(avg_width * 0.22)
|
92 |
+
y_tolerance = int(avg_height * 0.22)
|
93 |
+
else:
|
94 |
+
x_tolerance = y_tolerance = 5
|
95 |
+
|
96 |
+
# Find representative points for rows and columns using DBSCAN
|
97 |
+
rows = []
|
98 |
+
cols = []
|
99 |
+
|
100 |
+
# Cluster y-coordinates into rows
|
101 |
+
if centers_y:
|
102 |
+
y_centers = np.array(centers_y).reshape(-1, 1)
|
103 |
+
y_clustering = DBSCAN(eps=y_tolerance, min_samples=2, metric='euclidean').fit(y_centers)
|
104 |
+
unique_labels = np.unique(y_clustering.labels_)
|
105 |
+
for label in unique_labels:
|
106 |
+
if label != -1: # Skip noise points
|
107 |
+
cluster_points = y_centers[y_clustering.labels_ == label]
|
108 |
+
rows.append(int(np.mean(cluster_points)))
|
109 |
+
|
110 |
+
# Cluster x-coordinates into columns
|
111 |
+
if centers_x:
|
112 |
+
x_centers = np.array(centers_x).reshape(-1, 1)
|
113 |
+
x_clustering = DBSCAN(eps=x_tolerance, min_samples=2, metric='euclidean').fit(x_centers)
|
114 |
+
unique_labels = np.unique(x_clustering.labels_)
|
115 |
+
for label in unique_labels:
|
116 |
+
if label != -1: # Skip noise points
|
117 |
+
cluster_points = x_centers[x_clustering.labels_ == label]
|
118 |
+
cols.append(int(np.mean(cluster_points)))
|
119 |
+
|
120 |
+
# Sort rows and columns
|
121 |
+
rows.sort()
|
122 |
+
cols.sort()
|
123 |
+
|
124 |
+
# Calculate total knots
|
125 |
+
total_knots = len(rows) * len(cols)
|
126 |
+
|
127 |
+
# Add padding for measurements
|
128 |
+
padding = 100
|
129 |
+
padded_img = np.full((height + 2*padding, width + 2*padding, 3), 255, dtype=np.uint8)
|
130 |
+
padded_img[padding:padding+height, padding:padding+width] = image
|
131 |
+
|
132 |
+
# Draw boxes if requested
|
133 |
+
if show_boxes:
|
134 |
+
for box in boxes:
|
135 |
+
x1, y1, x2, y2 = box['coords']
|
136 |
+
cv2.rectangle(padded_img,
|
137 |
+
(x1 + padding, y1 + padding),
|
138 |
+
(x2 + padding, y2 + padding),
|
139 |
+
(0, 255, 0), 2)
|
140 |
+
|
141 |
+
# Draw measurement lines and labels
|
142 |
+
cv2.line(padded_img, (padding, padding//2), (width+padding, padding//2), (0, 0, 0), 2)
|
143 |
+
cv2.putText(padded_img, f"{len(cols)} knots",
|
144 |
+
(padding + width//2 - 100, padding//2 - 10),
|
145 |
+
cv2.FONT_HERSHEY_DUPLEX, 0.7, (0, 0, 0), 2)
|
146 |
+
|
147 |
+
cv2.line(padded_img, (width+padding+padding//2, padding), (width+padding+padding//2, height+padding), (0, 0, 0), 2)
|
148 |
+
cv2.putText(padded_img, f"{len(rows)} knots",
|
149 |
+
(width+padding+padding//2 + 10, padding + height//2),
|
150 |
+
cv2.FONT_HERSHEY_DUPLEX, 0.7, (0, 0, 0), 2)
|
151 |
+
|
152 |
+
# Add total knot count and density
|
153 |
+
cv2.putText(padded_img, f"{int(total_knots)} Total Knots",
|
154 |
+
(padding + width//2 - 100, height + padding + padding//2),
|
155 |
+
cv2.FONT_HERSHEY_DUPLEX, 0.7, (0, 0, 0), 2)
|
156 |
+
|
157 |
+
# Calculate area in cm² (assuming 1 pixel = 0.0264 cm)
|
158 |
+
area_cm2 = (width * height * 0.0264 * 0.0264)
|
159 |
+
density = total_knots / area_cm2 if area_cm2 > 0 else 0
|
160 |
+
|
161 |
+
cv2.putText(padded_img, f"{int(total_knots)} knots/sqcm",
|
162 |
+
(padding + width//2 - 100, height + padding + padding//2 + 30),
|
163 |
+
cv2.FONT_HERSHEY_DUPLEX, 0.7, (0, 0, 0), 2)
|
164 |
+
|
165 |
+
# Prepare detection information
|
166 |
+
detection_info += f"Rows: {len(rows)}\n"
|
167 |
+
detection_info += f"Columns: {len(cols)}\n"
|
168 |
+
detection_info += f"Density: {int(total_knots)} knots/cm²"
|
169 |
+
|
170 |
+
return padded_img, detection_info
|
171 |
+
|
172 |
+
# Create Gradio interface
|
173 |
+
with gr.Blocks(title="Rug Knot Detector") as demo:
|
174 |
+
gr.Markdown("# 🧶 Rug Knot Detector")
|
175 |
+
gr.Markdown("Upload an image of a rug to detect and analyze knots using our custom YOLO model.")
|
176 |
+
|
177 |
+
with gr.Row():
|
178 |
+
with gr.Column():
|
179 |
+
input_image = gr.Image(type="pil", label="Upload Rug Image")
|
180 |
+
show_boxes = gr.Checkbox(label="Show Detection Boxes", value=True)
|
181 |
+
detect_btn = gr.Button("Detect Knots")
|
182 |
+
|
183 |
+
with gr.Column():
|
184 |
+
output_image = gr.Image(label="Detection Results")
|
185 |
+
output_text = gr.Textbox(label="Detection Information", lines=5)
|
186 |
+
|
187 |
+
detect_btn.click(
|
188 |
+
fn=process_image,
|
189 |
+
inputs=[input_image, show_boxes],
|
190 |
+
outputs=[output_image, output_text]
|
191 |
+
)
|
192 |
+
|
193 |
+
if __name__ == "__main__":
|
194 |
+
demo.launch(share=True)
|
models/rugai_m_v2.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:47f692017990db9883779d548895ab5a002cc4a33fbf477edbe28e864e370612
|
3 |
+
size 40519845
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
ultralytics==8.3.72
|
3 |
+
ultralytics-thop==2.0.14
|
4 |
+
Pillow
|
5 |
+
numpy
|
6 |
+
scikit-learn
|