Spaces:
Running
on
Zero
Running
on
Zero
Delete dataloader/dataloader.py
Browse files- dataloader/dataloader.py +0 -498
dataloader/dataloader.py
DELETED
@@ -1,498 +0,0 @@
|
|
1 |
-
import numpy as np
|
2 |
-
import math, os, csv
|
3 |
-
import torchaudio
|
4 |
-
import torch
|
5 |
-
import torch.nn as nn
|
6 |
-
import torch.utils.data as data
|
7 |
-
import torch.distributed as dist
|
8 |
-
import soundfile as sf
|
9 |
-
from torch.utils.data import Dataset
|
10 |
-
import torch.utils.data as data
|
11 |
-
import os
|
12 |
-
import sys
|
13 |
-
sys.path.append(os.path.dirname(__file__))
|
14 |
-
|
15 |
-
from dataloader.misc import read_and_config_file
|
16 |
-
import librosa
|
17 |
-
import random
|
18 |
-
EPS = 1e-6
|
19 |
-
MAX_WAV_VALUE = 32768.0
|
20 |
-
|
21 |
-
def audioread(path, sampling_rate):
|
22 |
-
"""
|
23 |
-
Reads an audio file from the specified path, normalizes the audio,
|
24 |
-
resamples it to the desired sampling rate (if necessary), and ensures it is single-channel.
|
25 |
-
|
26 |
-
Parameters:
|
27 |
-
path (str): The file path of the audio file to be read.
|
28 |
-
sampling_rate (int): The target sampling rate for the audio.
|
29 |
-
|
30 |
-
Returns:
|
31 |
-
numpy.ndarray: The processed audio data, normalized, resampled (if necessary),
|
32 |
-
and converted to mono (if the input audio has multiple channels).
|
33 |
-
"""
|
34 |
-
|
35 |
-
# Read audio data and its sample rate from the file.
|
36 |
-
data, fs = sf.read(path)
|
37 |
-
|
38 |
-
# Normalize the audio data.
|
39 |
-
data, scalar = audio_norm(data)
|
40 |
-
|
41 |
-
# Resample the audio if the sample rate is different from the target sampling rate.
|
42 |
-
if fs != sampling_rate:
|
43 |
-
data = librosa.resample(data, orig_sr=fs, target_sr=sampling_rate)
|
44 |
-
|
45 |
-
# Convert to mono by selecting the first channel if the audio has multiple channels.
|
46 |
-
if len(data.shape) > 1:
|
47 |
-
data = data[:, 0]
|
48 |
-
|
49 |
-
# Return the processed audio data.
|
50 |
-
return data, scalar
|
51 |
-
|
52 |
-
def audio_norm(x):
|
53 |
-
"""
|
54 |
-
Normalizes the input audio signal to a target Root Mean Square (RMS) level,
|
55 |
-
applying two stages of scaling. This ensures the audio signal is neither too quiet
|
56 |
-
nor too loud, keeping its amplitude consistent.
|
57 |
-
|
58 |
-
Parameters:
|
59 |
-
x (numpy.ndarray): Input audio signal to be normalized.
|
60 |
-
|
61 |
-
Returns:
|
62 |
-
numpy.ndarray: Normalized audio signal.
|
63 |
-
"""
|
64 |
-
|
65 |
-
# Compute the root mean square (RMS) of the input audio signal.
|
66 |
-
rms = (x ** 2).mean() ** 0.5
|
67 |
-
|
68 |
-
# Calculate the scalar to adjust the signal to the target level (-25 dB).
|
69 |
-
scalar = 10 ** (-25 / 20) / (rms + EPS)
|
70 |
-
|
71 |
-
# Scale the input audio by the computed scalar.
|
72 |
-
x = x * scalar
|
73 |
-
|
74 |
-
# Compute the power of the scaled audio signal.
|
75 |
-
pow_x = x ** 2
|
76 |
-
|
77 |
-
# Calculate the average power of the audio signal.
|
78 |
-
avg_pow_x = pow_x.mean()
|
79 |
-
|
80 |
-
# Compute RMS only for audio segments with higher-than-average power.
|
81 |
-
rmsx = pow_x[pow_x > avg_pow_x].mean() ** 0.5
|
82 |
-
|
83 |
-
# Calculate another scalar to further normalize based on higher-power segments.
|
84 |
-
scalarx = 10 ** (-25 / 20) / (rmsx + EPS)
|
85 |
-
|
86 |
-
# Apply the second scalar to the audio.
|
87 |
-
x = x * scalarx
|
88 |
-
|
89 |
-
# Return the doubly normalized audio signal.
|
90 |
-
return x, 1/(scalar * scalarx + EPS)
|
91 |
-
|
92 |
-
class DataReader(object):
|
93 |
-
"""
|
94 |
-
A class for reading audio data from a list of files, normalizing it,
|
95 |
-
and extracting features for further processing. It supports extracting
|
96 |
-
features from each file, reshaping the data, and returning metadata
|
97 |
-
like utterance ID and data length.
|
98 |
-
|
99 |
-
Parameters:
|
100 |
-
args: Arguments containing the input path and target sampling rate.
|
101 |
-
|
102 |
-
Attributes:
|
103 |
-
file_list (list): A list of audio file paths to process.
|
104 |
-
sampling_rate (int): The target sampling rate for audio files.
|
105 |
-
"""
|
106 |
-
|
107 |
-
def __init__(self, args):
|
108 |
-
# Read and configure the file list from the input path provided in the arguments.
|
109 |
-
# The file list is decoded, if necessary.
|
110 |
-
self.file_list = read_and_config_file(args, args.input_path, decode=True)
|
111 |
-
|
112 |
-
# Store the target sampling rate.
|
113 |
-
self.sampling_rate = args.sampling_rate
|
114 |
-
|
115 |
-
# Store the args file
|
116 |
-
self.args = args
|
117 |
-
|
118 |
-
def __len__(self):
|
119 |
-
"""
|
120 |
-
Returns the number of audio files in the file list.
|
121 |
-
|
122 |
-
Returns:
|
123 |
-
int: Number of files to process.
|
124 |
-
"""
|
125 |
-
return len(self.file_list)
|
126 |
-
|
127 |
-
def __getitem__(self, index):
|
128 |
-
"""
|
129 |
-
Retrieves the features of the audio file at the given index.
|
130 |
-
|
131 |
-
Parameters:
|
132 |
-
index (int): Index of the file in the file list.
|
133 |
-
|
134 |
-
Returns:
|
135 |
-
tuple: Features (inputs, utterance ID, data length) for the selected audio file.
|
136 |
-
"""
|
137 |
-
if self.args.task == 'target_speaker_extraction':
|
138 |
-
if self.args.network_reference.cue== 'lip':
|
139 |
-
return self.file_list[index]
|
140 |
-
return self.extract_feature(self.file_list[index])
|
141 |
-
|
142 |
-
def extract_feature(self, path):
|
143 |
-
"""
|
144 |
-
Extracts features from the given audio file path.
|
145 |
-
|
146 |
-
Parameters:
|
147 |
-
path (str): The file path of the audio file.
|
148 |
-
|
149 |
-
Returns:
|
150 |
-
inputs (numpy.ndarray): Reshaped audio data for further processing.
|
151 |
-
utt_id (str): The unique identifier of the audio file, usually the filename.
|
152 |
-
length (int): The length of the original audio data.
|
153 |
-
"""
|
154 |
-
# Extract the utterance ID from the file path (usually the filename).
|
155 |
-
utt_id = path.split('/')[-1]
|
156 |
-
|
157 |
-
# Read and normalize the audio data, converting it to float32 for processing.
|
158 |
-
#data = audioread(path, self.sampling_rate).astype(np.float32)
|
159 |
-
data, scalar = audioread(path, self.sampling_rate)
|
160 |
-
data = data.astype(np.float32)
|
161 |
-
|
162 |
-
# Reshape the data to ensure it's in the format [1, data_length].
|
163 |
-
inputs = np.reshape(data, [1, data.shape[0]])
|
164 |
-
|
165 |
-
# Return the reshaped audio data, utterance ID, and the length of the original data.
|
166 |
-
return inputs, utt_id, data.shape[0], scalar
|
167 |
-
|
168 |
-
class Wave_Processor(object):
|
169 |
-
"""
|
170 |
-
A class for processing audio data, specifically for reading input and label audio files,
|
171 |
-
segmenting them into fixed-length segments, and applying padding or trimming as necessary.
|
172 |
-
|
173 |
-
Methods:
|
174 |
-
process(path, segment_length, sampling_rate):
|
175 |
-
Processes audio data by reading, padding, or segmenting it to match the specified segment length.
|
176 |
-
|
177 |
-
Parameters:
|
178 |
-
path (dict): A dictionary containing file paths for 'inputs' and 'labels' audio files.
|
179 |
-
segment_length (int): The desired length of audio segments to extract.
|
180 |
-
sampling_rate (int): The target sampling rate for reading the audio files.
|
181 |
-
"""
|
182 |
-
|
183 |
-
def process(self, path, segment_length, sampling_rate):
|
184 |
-
"""
|
185 |
-
Reads input and label audio files, and ensures the audio is segmented into
|
186 |
-
the desired length, padding if necessary or extracting random segments if
|
187 |
-
the audio is longer than the target segment length.
|
188 |
-
|
189 |
-
Parameters:
|
190 |
-
path (dict): Dictionary containing the paths to 'inputs' and 'labels' audio files.
|
191 |
-
segment_length (int): Desired length of the audio segment in samples.
|
192 |
-
sampling_rate (int): Target sample rate for the audio.
|
193 |
-
|
194 |
-
Returns:
|
195 |
-
tuple: A pair of numpy arrays representing the processed input and label audio,
|
196 |
-
either padded to the segment length or trimmed.
|
197 |
-
"""
|
198 |
-
# Read the input and label audio files using the target sampling rate.
|
199 |
-
wave_inputs = audioread(path['inputs'], sampling_rate)
|
200 |
-
wave_labels = audioread(path['labels'], sampling_rate)
|
201 |
-
|
202 |
-
# Get the length of the label audio (assumed both inputs and labels have similar lengths).
|
203 |
-
len_wav = wave_labels.shape[0]
|
204 |
-
|
205 |
-
# If the input audio is shorter than the desired segment length, pad it with zeros.
|
206 |
-
if wave_inputs.shape[0] < segment_length:
|
207 |
-
# Create zero-padded arrays for inputs and labels.
|
208 |
-
padded_inputs = np.zeros(segment_length, dtype=np.float32)
|
209 |
-
padded_labels = np.zeros(segment_length, dtype=np.float32)
|
210 |
-
|
211 |
-
# Copy the original audio into the padded arrays.
|
212 |
-
padded_inputs[:wave_inputs.shape[0]] = wave_inputs
|
213 |
-
padded_labels[:wave_labels.shape[0]] = wave_labels
|
214 |
-
else:
|
215 |
-
# Randomly select a start index for segmenting the audio if it's longer than the segment length.
|
216 |
-
st_idx = random.randint(0, len_wav - segment_length)
|
217 |
-
|
218 |
-
# Extract a segment of the desired length from the inputs and labels.
|
219 |
-
padded_inputs = wave_inputs[st_idx:st_idx + segment_length]
|
220 |
-
padded_labels = wave_labels[st_idx:st_idx + segment_length]
|
221 |
-
|
222 |
-
# Return the processed (padded or segmented) input and label audio.
|
223 |
-
return padded_inputs, padded_labels
|
224 |
-
|
225 |
-
class Fbank_Processor(object):
|
226 |
-
"""
|
227 |
-
A class for processing input audio data into mel-filterbank (Fbank) features,
|
228 |
-
including the computation of delta and delta-delta features.
|
229 |
-
|
230 |
-
Methods:
|
231 |
-
process(inputs, args):
|
232 |
-
Processes the raw audio input and returns the mel-filterbank features
|
233 |
-
along with delta and delta-delta features.
|
234 |
-
"""
|
235 |
-
|
236 |
-
def process(self, inputs, args):
|
237 |
-
# Convert frame length and shift from seconds to milliseconds.
|
238 |
-
frame_length = int(args.win_len / args.sampling_rate * 1000)
|
239 |
-
frame_shift = int(args.win_inc / args.sampling_rate * 1000)
|
240 |
-
|
241 |
-
# Set up configuration for the mel-filterbank computation.
|
242 |
-
fbank_config = {
|
243 |
-
"dither": 1.0,
|
244 |
-
"frame_length": frame_length,
|
245 |
-
"frame_shift": frame_shift,
|
246 |
-
"num_mel_bins": args.num_mels,
|
247 |
-
"sample_frequency": args.sampling_rate,
|
248 |
-
"window_type": args.win_type
|
249 |
-
}
|
250 |
-
|
251 |
-
# Convert the input audio to a FloatTensor and scale it to match the expected input range.
|
252 |
-
inputs = torch.FloatTensor(inputs * MAX_WAV_VALUE)
|
253 |
-
|
254 |
-
# Compute the mel-filterbank features using Kaldi's fbank function.
|
255 |
-
fbank = torchaudio.compliance.kaldi.fbank(inputs.unsqueeze(0), **fbank_config)
|
256 |
-
|
257 |
-
# Add delta and delta-delta features.
|
258 |
-
fbank_tr = torch.transpose(fbank, 0, 1)
|
259 |
-
fbank_delta = torchaudio.functional.compute_deltas(fbank_tr)
|
260 |
-
fbank_delta_delta = torchaudio.functional.compute_deltas(fbank_delta)
|
261 |
-
fbank_delta = torch.transpose(fbank_delta, 0, 1)
|
262 |
-
fbank_delta_delta = torch.transpose(fbank_delta_delta, 0, 1)
|
263 |
-
|
264 |
-
# Concatenate the original Fbank, delta, and delta-delta features.
|
265 |
-
fbanks = torch.cat([fbank, fbank_delta, fbank_delta_delta], dim=1)
|
266 |
-
|
267 |
-
return fbanks.numpy()
|
268 |
-
|
269 |
-
class AudioDataset(Dataset):
|
270 |
-
"""
|
271 |
-
A dataset class for loading and processing audio data from different data types
|
272 |
-
(train, validation, test). Supports audio processing and feature extraction
|
273 |
-
(e.g., waveform processing, Fbank feature extraction).
|
274 |
-
|
275 |
-
Parameters:
|
276 |
-
args: Arguments containing dataset configuration (paths, sampling rate, etc.).
|
277 |
-
data_type (str): The type of data to load (train, val, test).
|
278 |
-
"""
|
279 |
-
|
280 |
-
def __init__(self, args, data_type):
|
281 |
-
self.args = args
|
282 |
-
self.sampling_rate = args.sampling_rate
|
283 |
-
|
284 |
-
# Read the list of audio files based on the data type.
|
285 |
-
if data_type == 'train':
|
286 |
-
self.wav_list = read_and_config_file(args.tr_list)
|
287 |
-
elif data_type == 'val':
|
288 |
-
self.wav_list = read_and_config_file(args.cv_list)
|
289 |
-
elif data_type == 'test':
|
290 |
-
self.wav_list = read_and_config_file(args.tt_list)
|
291 |
-
else:
|
292 |
-
print(f'Data type: {data_type} is unknown!')
|
293 |
-
|
294 |
-
# Initialize processors for waveform and Fbank features.
|
295 |
-
self.wav_processor = Wave_Processor()
|
296 |
-
self.fbank_processor = Fbank_Processor()
|
297 |
-
|
298 |
-
# Clip data to a fixed segment length based on the sampling rate and max length.
|
299 |
-
self.segment_length = self.sampling_rate * self.args.max_length
|
300 |
-
print(f'No. {data_type} files: {len(self.wav_list)}')
|
301 |
-
|
302 |
-
def __len__(self):
|
303 |
-
# Return the number of audio files in the dataset.
|
304 |
-
return len(self.wav_list)
|
305 |
-
|
306 |
-
def __getitem__(self, index):
|
307 |
-
# Get the input and label paths from the list.
|
308 |
-
data_info = self.wav_list[index]
|
309 |
-
|
310 |
-
# Process the waveform inputs and labels.
|
311 |
-
inputs, labels = self.wav_processor.process(
|
312 |
-
{'inputs': data_info['inputs'], 'labels': data_info['labels']},
|
313 |
-
self.segment_length,
|
314 |
-
self.sampling_rate
|
315 |
-
)
|
316 |
-
|
317 |
-
# Optionally load Fbank features if specified.
|
318 |
-
if self.args.load_fbank is not None:
|
319 |
-
fbanks = self.fbank_processor.process(inputs, self.args)
|
320 |
-
return inputs * MAX_WAV_VALUE, labels * MAX_WAV_VALUE, fbanks
|
321 |
-
|
322 |
-
return inputs, labels
|
323 |
-
|
324 |
-
def zero_pad_concat(self, inputs):
|
325 |
-
"""
|
326 |
-
Concatenates a list of input arrays, applying zero-padding as needed to ensure
|
327 |
-
they all match the length of the longest input.
|
328 |
-
|
329 |
-
Parameters:
|
330 |
-
inputs (list of numpy arrays): List of input arrays to be concatenated.
|
331 |
-
|
332 |
-
Returns:
|
333 |
-
numpy.ndarray: A zero-padded array with concatenated inputs.
|
334 |
-
"""
|
335 |
-
|
336 |
-
# Get the maximum length among all inputs.
|
337 |
-
max_t = max(inp.shape[0] for inp in inputs)
|
338 |
-
|
339 |
-
# Determine the shape of the output based on the input dimensions.
|
340 |
-
shape = None
|
341 |
-
if len(inputs[0].shape) == 1:
|
342 |
-
shape = (len(inputs), max_t)
|
343 |
-
elif len(inputs[0].shape) == 2:
|
344 |
-
shape = (len(inputs), max_t, inputs[0].shape[1])
|
345 |
-
|
346 |
-
# Initialize an array with zeros to hold the concatenated inputs.
|
347 |
-
input_mat = np.zeros(shape, dtype=np.float32)
|
348 |
-
|
349 |
-
# Copy the input data into the zero-padded array.
|
350 |
-
for e, inp in enumerate(inputs):
|
351 |
-
if len(inp.shape) == 1:
|
352 |
-
input_mat[e, :inp.shape[0]] = inp
|
353 |
-
elif len(inp.shape) == 2:
|
354 |
-
input_mat[e, :inp.shape[0], :] = inp
|
355 |
-
|
356 |
-
return input_mat
|
357 |
-
|
358 |
-
def collate_fn_2x_wavs(data):
|
359 |
-
"""
|
360 |
-
A custom collate function for combining batches of waveform input and label pairs.
|
361 |
-
|
362 |
-
Parameters:
|
363 |
-
data (list): List of tuples (inputs, labels).
|
364 |
-
|
365 |
-
Returns:
|
366 |
-
tuple: Batched inputs and labels as torch.FloatTensors.
|
367 |
-
"""
|
368 |
-
inputs, labels = zip(*data)
|
369 |
-
x = torch.FloatTensor(inputs)
|
370 |
-
y = torch.FloatTensor(labels)
|
371 |
-
return x, y
|
372 |
-
|
373 |
-
def collate_fn_2x_wavs_fbank(data):
|
374 |
-
"""
|
375 |
-
A custom collate function for combining batches of waveform inputs, labels, and Fbank features.
|
376 |
-
|
377 |
-
Parameters:
|
378 |
-
data (list): List of tuples (inputs, labels, fbanks).
|
379 |
-
|
380 |
-
Returns:
|
381 |
-
tuple: Batched inputs, labels, and Fbank features as torch.FloatTensors.
|
382 |
-
"""
|
383 |
-
inputs, labels, fbanks = zip(*data)
|
384 |
-
x = torch.FloatTensor(inputs)
|
385 |
-
y = torch.FloatTensor(labels)
|
386 |
-
z = torch.FloatTensor(fbanks)
|
387 |
-
return x, y, z
|
388 |
-
|
389 |
-
class DistributedSampler(data.Sampler):
|
390 |
-
"""
|
391 |
-
Sampler for distributed training. Divides the dataset among multiple replicas (processes),
|
392 |
-
ensuring that each process gets a unique subset of the data. It also supports shuffling
|
393 |
-
and managing epochs.
|
394 |
-
|
395 |
-
Parameters:
|
396 |
-
dataset (Dataset): The dataset to sample from.
|
397 |
-
num_replicas (int): Number of processes participating in the training.
|
398 |
-
rank (int): Rank of the current process.
|
399 |
-
shuffle (bool): Whether to shuffle the data or not.
|
400 |
-
seed (int): Random seed for reproducibility.
|
401 |
-
"""
|
402 |
-
|
403 |
-
def __init__(self, dataset, num_replicas=None, rank=None, shuffle=True, seed=0):
|
404 |
-
if num_replicas is None:
|
405 |
-
if not dist.is_available():
|
406 |
-
raise RuntimeError("Requires distributed package to be available")
|
407 |
-
num_replicas = dist.get_world_size()
|
408 |
-
if rank is None:
|
409 |
-
if not dist.is_available():
|
410 |
-
raise RuntimeError("Requires distributed package to be available")
|
411 |
-
rank = dist.get_rank()
|
412 |
-
|
413 |
-
self.dataset = dataset
|
414 |
-
self.num_replicas = num_replicas
|
415 |
-
self.rank = rank
|
416 |
-
self.epoch = 0
|
417 |
-
self.num_samples = int(math.ceil(len(self.dataset) * 1.0 / self.num_replicas))
|
418 |
-
self.total_size = self.num_samples * self.num_replicas
|
419 |
-
self.shuffle = shuffle
|
420 |
-
self.seed = seed
|
421 |
-
|
422 |
-
def __iter__(self):
|
423 |
-
# Shuffle the indices based on the epoch and seed.
|
424 |
-
if self.shuffle:
|
425 |
-
g = torch.Generator()
|
426 |
-
g.manual_seed(self.seed + self.epoch)
|
427 |
-
ind = torch.randperm(int(len(self.dataset) / self.num_replicas), generator=g) * self.num_replicas
|
428 |
-
indices = []
|
429 |
-
for i in range(self.num_replicas):
|
430 |
-
indices = indices + (ind + i).tolist()
|
431 |
-
else:
|
432 |
-
indices = list(range(len(self.dataset)))
|
433 |
-
|
434 |
-
# Add extra samples to make the dataset evenly divisible.
|
435 |
-
indices += indices[:(self.total_size - len(indices))]
|
436 |
-
assert len(indices) == self.total_size
|
437 |
-
|
438 |
-
# Subsample for the current process.
|
439 |
-
indices = indices[self.rank * self.num_samples:(self.rank + 1) * self.num_samples]
|
440 |
-
assert len(indices) == self.num_samples
|
441 |
-
|
442 |
-
return iter(indices)
|
443 |
-
|
444 |
-
def __len__(self):
|
445 |
-
return self.num_samples
|
446 |
-
|
447 |
-
def set_epoch(self, epoch):
|
448 |
-
self.epoch = epoch
|
449 |
-
|
450 |
-
def get_dataloader(args, data_type):
|
451 |
-
"""
|
452 |
-
Creates and returns a data loader and sampler for the specified dataset type (train, validation, or test).
|
453 |
-
|
454 |
-
Parameters:
|
455 |
-
args (Namespace): Configuration arguments containing details such as batch size, sampling rate,
|
456 |
-
network type, and whether distributed training is used.
|
457 |
-
data_type (str): The type of dataset to load ('train', 'val', 'test').
|
458 |
-
|
459 |
-
Returns:
|
460 |
-
sampler (DistributedSampler or None): The sampler for distributed training, or None if not used.
|
461 |
-
generator (DataLoader): The PyTorch DataLoader for the specified dataset.
|
462 |
-
"""
|
463 |
-
|
464 |
-
# Initialize the dataset based on the given arguments and dataset type (train, val, or test).
|
465 |
-
datasets = AudioDataset(args=args, data_type=data_type)
|
466 |
-
|
467 |
-
# Create a distributed sampler if distributed training is enabled; otherwise, use no sampler.
|
468 |
-
sampler = DistributedSampler(
|
469 |
-
datasets,
|
470 |
-
num_replicas=args.world_size, # Number of replicas in distributed training.
|
471 |
-
rank=args.local_rank # Rank of the current process.
|
472 |
-
) if args.distributed else None
|
473 |
-
|
474 |
-
# Select the appropriate collate function based on the network type.
|
475 |
-
if args.network == 'FRCRN_SE_16K' or args.network == 'MossFormerGAN_SE_16K':
|
476 |
-
# Use the collate function for two-channel waveform data (inputs and labels).
|
477 |
-
collate_fn = collate_fn_2x_wavs
|
478 |
-
elif args.network == 'MossFormer2_SE_48K':
|
479 |
-
# Use the collate function for waveforms along with Fbank features.
|
480 |
-
collate_fn = collate_fn_2x_wavs_fbank
|
481 |
-
else:
|
482 |
-
# Print an error message if the network type is unknown.
|
483 |
-
print(f'in dataloader, please specify a correct network type using args.network!')
|
484 |
-
return
|
485 |
-
|
486 |
-
# Create a DataLoader with the specified dataset, batch size, and worker configuration.
|
487 |
-
generator = data.DataLoader(
|
488 |
-
datasets,
|
489 |
-
batch_size=args.batch_size, # Batch size for training.
|
490 |
-
shuffle=(sampler is None), # Shuffle the data only if no sampler is used.
|
491 |
-
collate_fn=collate_fn, # Use the selected collate function for batching data.
|
492 |
-
num_workers=args.num_workers, # Number of workers for data loading.
|
493 |
-
sampler=sampler # Use the distributed sampler if applicable.
|
494 |
-
)
|
495 |
-
|
496 |
-
# Return both the sampler and DataLoader (generator).
|
497 |
-
return sampler, generator
|
498 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|