Spaces:
Running
on
Zero
Running
on
Zero
alibabasglab
commited on
Upload network_wrapper.py
Browse files- network_wrapper.py +228 -0
network_wrapper.py
ADDED
@@ -0,0 +1,228 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import json
|
3 |
+
import yamlargparse
|
4 |
+
import torch.nn as nn
|
5 |
+
|
6 |
+
class network_wrapper(nn.Module):
|
7 |
+
"""
|
8 |
+
A wrapper class for loading different neural network models for tasks such as
|
9 |
+
speech enhancement (SE), speech separation (SS), and target speaker extraction (TSE).
|
10 |
+
It manages argument parsing, model configuration loading, and model instantiation
|
11 |
+
based on the task and model name.
|
12 |
+
"""
|
13 |
+
|
14 |
+
def __init__(self):
|
15 |
+
"""
|
16 |
+
Initializes the network wrapper without any predefined model or arguments.
|
17 |
+
"""
|
18 |
+
super(network_wrapper, self).__init__()
|
19 |
+
self.args = None # Placeholder for command-line arguments
|
20 |
+
self.config_path = None # Path to the YAML configuration file
|
21 |
+
self.model_name = None # Model name to be loaded based on the task
|
22 |
+
|
23 |
+
def load_args_se(self):
|
24 |
+
"""
|
25 |
+
Loads the arguments for the speech enhancement task using a YAML config file.
|
26 |
+
Sets the configuration path and parses all the required parameters such as
|
27 |
+
input/output paths, model settings, and FFT parameters.
|
28 |
+
"""
|
29 |
+
self.config_path = 'config/inference/' + self.model_name + '.yaml'
|
30 |
+
parser = yamlargparse.ArgumentParser("Settings")
|
31 |
+
|
32 |
+
# General model and inference settings
|
33 |
+
parser.add_argument('--config', help='Config file path', action=yamlargparse.ActionConfigFile)
|
34 |
+
parser.add_argument('--mode', type=str, default='inference', help='Modes: train or inference')
|
35 |
+
parser.add_argument('--checkpoint-dir', dest='checkpoint_dir', type=str, default='checkpoints/FRCRN_SE_16K', help='Checkpoint directory')
|
36 |
+
parser.add_argument('--input-path', dest='input_path', type=str, help='Path for noisy audio input')
|
37 |
+
parser.add_argument('--output-dir', dest='output_dir', type=str, help='Directory for enhanced audio output')
|
38 |
+
parser.add_argument('--use-cuda', dest='use_cuda', default=1, type=int, help='Enable CUDA (1=True, 0=False)')
|
39 |
+
parser.add_argument('--num-gpu', dest='num_gpu', type=int, default=1, help='Number of GPUs to use')
|
40 |
+
|
41 |
+
# Model-specific settings
|
42 |
+
parser.add_argument('--network', type=str, help='Select SE models: FRCRN_SE_16K, MossFormer2_SE_48K')
|
43 |
+
parser.add_argument('--sampling-rate', dest='sampling_rate', type=int, default=16000, help='Sampling rate')
|
44 |
+
parser.add_argument('--one-time-decode-length', dest='one_time_decode_length', type=float, default=60.0, help='Max segment length for one-pass decoding')
|
45 |
+
parser.add_argument('--decode-window', dest='decode_window', type=float, default=1.0, help='Decoding chunk size')
|
46 |
+
|
47 |
+
# FFT parameters for feature extraction
|
48 |
+
parser.add_argument('--window-len', dest='win_len', type=int, default=400, help='Window length for framing')
|
49 |
+
parser.add_argument('--window-inc', dest='win_inc', type=int, default=100, help='Window shift for framing')
|
50 |
+
parser.add_argument('--fft-len', dest='fft_len', type=int, default=512, help='FFT length for feature extraction')
|
51 |
+
parser.add_argument('--num-mels', dest='num_mels', type=int, default=60, help='Number of mel-spectrogram bins')
|
52 |
+
parser.add_argument('--window-type', dest='win_type', type=str, default='hamming', help='Window type: hamming or hanning')
|
53 |
+
|
54 |
+
# Parse arguments from the config file
|
55 |
+
self.args = parser.parse_args(['--config', self.config_path])
|
56 |
+
|
57 |
+
def load_args_ss(self):
|
58 |
+
"""
|
59 |
+
Loads the arguments for the speech separation task using a YAML config file.
|
60 |
+
This method sets parameters such as input/output paths, model configurations,
|
61 |
+
and encoder/decoder settings for the MossFormer2-based speech separation model.
|
62 |
+
"""
|
63 |
+
self.config_path = 'config/inference/' + self.model_name + '.yaml'
|
64 |
+
parser = yamlargparse.ArgumentParser("Settings")
|
65 |
+
|
66 |
+
# General model and inference settings
|
67 |
+
parser.add_argument('--config', default=self.config_path, help='Config file path', action=yamlargparse.ActionConfigFile)
|
68 |
+
parser.add_argument('--mode', type=str, default='inference', help='Modes: train or inference')
|
69 |
+
parser.add_argument('--checkpoint-dir', dest='checkpoint_dir', type=str, default='checkpoints/FRCRN_SE_16K', help='Checkpoint directory')
|
70 |
+
parser.add_argument('--input-path', dest='input_path', type=str, help='Path for mixed audio input')
|
71 |
+
parser.add_argument('--output-dir', dest='output_dir', type=str, help='Directory for separated audio output')
|
72 |
+
parser.add_argument('--use-cuda', dest='use_cuda', default=1, type=int, help='Enable CUDA (1=True, 0=False)')
|
73 |
+
parser.add_argument('--num-gpu', dest='num_gpu', type=int, default=1, help='Number of GPUs to use')
|
74 |
+
|
75 |
+
# Model-specific settings for speech separation
|
76 |
+
parser.add_argument('--network', type=str, help='Select SS models: MossFormer2_SS_16K')
|
77 |
+
parser.add_argument('--sampling-rate', dest='sampling_rate', type=int, default=16000, help='Sampling rate')
|
78 |
+
parser.add_argument('--num-spks', dest='num_spks', type=int, default=2, help='Number of speakers to separate')
|
79 |
+
parser.add_argument('--one-time-decode-length', dest='one_time_decode_length', type=float, default=60.0, help='Max segment length for one-pass decoding')
|
80 |
+
parser.add_argument('--decode-window', dest='decode_window', type=float, default=1.0, help='Decoding chunk size')
|
81 |
+
|
82 |
+
# Encoder settings
|
83 |
+
parser.add_argument('--encoder_kernel-size', dest='encoder_kernel_size', type=int, default=16, help='Kernel size for Conv1D encoder')
|
84 |
+
parser.add_argument('--encoder-embedding-dim', dest='encoder_embedding_dim', type=int, default=512, help='Embedding dimension from encoder')
|
85 |
+
|
86 |
+
# MossFormer model parameters
|
87 |
+
parser.add_argument('--mossformer-squence-dim', dest='mossformer_sequence_dim', type=int, default=512, help='Sequence dimension for MossFormer')
|
88 |
+
parser.add_argument('--num-mossformer_layer', dest='num_mossformer_layer', type=int, default=24, help='Number of MossFormer layers')
|
89 |
+
|
90 |
+
# Parse arguments from the config file
|
91 |
+
self.args = parser.parse_args(['--config', self.config_path])
|
92 |
+
|
93 |
+
def load_config_json(self, config_json_path):
|
94 |
+
with open(config_json_path, 'r') as file:
|
95 |
+
return json.load(file)
|
96 |
+
|
97 |
+
def combine_config_and_args(self, json_config, args):
|
98 |
+
# Convert argparse.Namespace to a dictionary
|
99 |
+
args_dict = vars(args)
|
100 |
+
|
101 |
+
# Remove `config` key from args_dict (it's the path to the JSON file)
|
102 |
+
args_dict.pop("config", None)
|
103 |
+
|
104 |
+
# Combine JSON config and args_dict, prioritizing args_dict
|
105 |
+
combined_config = {**json_config, **{k: v for k, v in args_dict.items() if v is not None}}
|
106 |
+
return combined_config
|
107 |
+
|
108 |
+
def load_args_sr(self):
|
109 |
+
"""
|
110 |
+
Loads the arguments for the speech super-resolution task using a YAML config file.
|
111 |
+
Sets the configuration path and parses all the required parameters such as
|
112 |
+
input/output paths, model settings, and FFT parameters.
|
113 |
+
"""
|
114 |
+
self.config_path = 'config/inference/' + self.model_name + '.yaml'
|
115 |
+
parser = yamlargparse.ArgumentParser("Settings")
|
116 |
+
|
117 |
+
# General model and inference settings
|
118 |
+
parser.add_argument('--config', help='Config file path', action=yamlargparse.ActionConfigFile)
|
119 |
+
parser.add_argument('--config_json', type=str, help='Path to the config.json file')
|
120 |
+
parser.add_argument('--mode', type=str, default='inference', help='Modes: train or inference')
|
121 |
+
parser.add_argument('--checkpoint-dir', dest='checkpoint_dir', type=str, default='checkpoints/FRCRN_SE_16K', help='Checkpoint directory')
|
122 |
+
parser.add_argument('--input-path', dest='input_path', type=str, help='Path for noisy audio input')
|
123 |
+
parser.add_argument('--output-dir', dest='output_dir', type=str, help='Directory for enhanced audio output')
|
124 |
+
parser.add_argument('--use-cuda', dest='use_cuda', default=1, type=int, help='Enable CUDA (1=True, 0=False)')
|
125 |
+
parser.add_argument('--num-gpu', dest='num_gpu', type=int, default=1, help='Number of GPUs to use')
|
126 |
+
|
127 |
+
# Model-specific settings
|
128 |
+
parser.add_argument('--network', type=str, help='Select SE models: FRCRN_SE_16K, MossFormer2_SE_48K')
|
129 |
+
parser.add_argument('--sampling-rate', dest='sampling_rate', type=int, default=16000, help='Sampling rate')
|
130 |
+
parser.add_argument('--one-time-decode-length', dest='one_time_decode_length', type=float, default=60.0, help='Max segment length for one-pass decoding')
|
131 |
+
parser.add_argument('--decode-window', dest='decode_window', type=float, default=1.0, help='Decoding chunk size')
|
132 |
+
|
133 |
+
# Parse arguments from the config file
|
134 |
+
self.args = parser.parse_args(['--config', self.config_path])
|
135 |
+
json_config = self.load_config_json(self.args.config_json)
|
136 |
+
self.args = self.combine_config_and_args(json_config, self.args)
|
137 |
+
self.args = argparse.Namespace(**self.args)
|
138 |
+
|
139 |
+
def load_args_tse(self):
|
140 |
+
"""
|
141 |
+
Loads the arguments for the target speaker extraction (TSE) task using a YAML config file.
|
142 |
+
Parameters include input/output paths, CUDA configurations, and decoding parameters.
|
143 |
+
"""
|
144 |
+
self.config_path = 'config/inference/' + self.model_name + '.yaml'
|
145 |
+
parser = yamlargparse.ArgumentParser("Settings")
|
146 |
+
|
147 |
+
# General model and inference settings
|
148 |
+
parser.add_argument('--config', default=self.config_path, help='Config file path', action=yamlargparse.ActionConfigFile)
|
149 |
+
parser.add_argument('--mode', type=str, default='inference', help='Modes: train or inference')
|
150 |
+
parser.add_argument('--checkpoint-dir', dest='checkpoint_dir', type=str, default='checkpoint_dir/AV_MossFormer2_TSE_16K', help='Checkpoint directory')
|
151 |
+
parser.add_argument('--input-path', dest='input_path', type=str, help='Path for mixed audio input')
|
152 |
+
parser.add_argument('--output-dir', dest='output_dir', type=str, help='Directory for separated audio output')
|
153 |
+
parser.add_argument('--use-cuda', dest='use_cuda', default=1, type=int, help='Enable CUDA (1=True, 0=False)')
|
154 |
+
parser.add_argument('--num-gpu', dest='num_gpu', type=int, default=1, help='Number of GPUs to use')
|
155 |
+
|
156 |
+
# Model-specific settings for target speaker extraction
|
157 |
+
parser.add_argument('--network', type=str, help='Select TSE models(currently supports AV_MossFormer2_TSE_16K)')
|
158 |
+
parser.add_argument('--sampling-rate', dest='sampling_rate', type=int, default=16000, help='Sampling rate (currently supports 16 kHz)')
|
159 |
+
parser.add_argument('--network_reference', type=dict, help='a dictionary that contains the parameters of auxilary reference signal')
|
160 |
+
parser.add_argument('--network_audio', type=dict, help='a dictionary that contains the network parameters')
|
161 |
+
|
162 |
+
# Decode parameters for streaming or chunk-based decoding
|
163 |
+
parser.add_argument('--one-time-decode-length', dest='one_time_decode_length', type=int, default=60, help='Max segment length for one-pass decoding')
|
164 |
+
parser.add_argument('--decode-window', dest='decode_window', type=int, default=1, help='Chunk length for streaming')
|
165 |
+
|
166 |
+
# Parse arguments from the config file
|
167 |
+
self.args = parser.parse_args(['--config', self.config_path])
|
168 |
+
|
169 |
+
def __call__(self, task, model_name):
|
170 |
+
"""
|
171 |
+
Calls the appropriate argument-loading function based on the task type
|
172 |
+
(e.g., 'speech_enhancement', 'speech_separation', or 'target_speaker_extraction').
|
173 |
+
It then loads the corresponding model based on the selected task and model name.
|
174 |
+
|
175 |
+
Args:
|
176 |
+
- task (str): The task type ('speech_enhancement', 'speech_separation', 'target_speaker_extraction').
|
177 |
+
- model_name (str): The name of the model to load (e.g., 'FRCRN_SE_16K').
|
178 |
+
|
179 |
+
Returns:
|
180 |
+
- self.network: The instantiated neural network model.
|
181 |
+
"""
|
182 |
+
|
183 |
+
self.model_name = model_name # Set the model name based on user input
|
184 |
+
|
185 |
+
# Load arguments specific to the task
|
186 |
+
if task == 'speech_enhancement':
|
187 |
+
self.load_args_se() # Load arguments for speech enhancement
|
188 |
+
elif task == 'speech_separation':
|
189 |
+
self.load_args_ss() # Load arguments for speech separation
|
190 |
+
elif task == 'speech_super_resolution':
|
191 |
+
self.load_args_sr() #load aurguments for speech super-resolution
|
192 |
+
elif task == 'target_speaker_extraction':
|
193 |
+
self.load_args_tse() # Load arguments for target speaker extraction
|
194 |
+
else:
|
195 |
+
# Print error message if the task is unsupported
|
196 |
+
print(f'{task} is not supported, please select from: '
|
197 |
+
'speech_enhancement, speech_separation, or target_speaker_extraction')
|
198 |
+
return
|
199 |
+
|
200 |
+
#print(self.args) # Display the parsed arguments
|
201 |
+
self.args.task = task
|
202 |
+
self.args.network = self.model_name # Set the network name to the model name
|
203 |
+
|
204 |
+
# Initialize the corresponding network based on the selected model
|
205 |
+
if self.args.network == 'FRCRN_SE_16K':
|
206 |
+
from networks import CLS_FRCRN_SE_16K
|
207 |
+
self.network = CLS_FRCRN_SE_16K(self.args) # Load FRCRN model
|
208 |
+
elif self.args.network == 'MossFormer2_SE_48K':
|
209 |
+
from networks import CLS_MossFormer2_SE_48K
|
210 |
+
self.network = CLS_MossFormer2_SE_48K(self.args) # Load MossFormer2_SE model
|
211 |
+
elif self.args.network == 'MossFormer2_SR_48K':
|
212 |
+
from networks import CLS_MossFormer2_SR_48K
|
213 |
+
self.network = CLS_MossFormer2_SR_48K(self.args) #Load MossFormer2_SR model
|
214 |
+
elif self.args.network == 'MossFormerGAN_SE_16K':
|
215 |
+
from networks import CLS_MossFormerGAN_SE_16K
|
216 |
+
self.network = CLS_MossFormerGAN_SE_16K(self.args) # Load MossFormerGAN model
|
217 |
+
elif self.args.network == 'MossFormer2_SS_16K':
|
218 |
+
from networks import CLS_MossFormer2_SS_16K
|
219 |
+
self.network = CLS_MossFormer2_SS_16K(self.args) # Load MossFormer2 for separation
|
220 |
+
elif self.args.network == 'AV_MossFormer2_TSE_16K':
|
221 |
+
from networks import CLS_AV_MossFormer2_TSE_16K
|
222 |
+
self.network = CLS_AV_MossFormer2_TSE_16K(self.args) # Load AV MossFormer2 model for target speaker extraction
|
223 |
+
else:
|
224 |
+
# Print error message if no matching network is found
|
225 |
+
print("No network found!")
|
226 |
+
return
|
227 |
+
|
228 |
+
return self.network # Return the instantiated network model
|