Spaces:
Runtime error
Runtime error
import torch | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
import gradio as gr | |
device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
tokenizer = AutoTokenizer.from_pretrained("alibidaran/medical_transcription_generator") | |
model = AutoModelForCausalLM.from_pretrained("alibidaran/medical_transcription_generator").to(device) | |
def generate_text(Text,Max_length,Temperature): | |
torch.manual_seed(32) | |
tokenizer.pad_token_id=tokenizer.eos_token_id | |
with torch.no_grad(): | |
input_ids = tokenizer(Text, return_tensors="pt")["input_ids"].to('cpu') | |
attn_mask=tokenizer(Text, return_tensors="pt")["attention_mask"].to('cpu') | |
output=model.generate(input_ids=input_ids,attention_mask=attn_mask,max_new_tokens=Max_length,do_sample=True, temperature=Temperature, top_p=0.90,top_k=10) | |
return tokenizer.decode(output[0]) | |
demo=gr.Interface( | |
generate_text, | |
['text', | |
gr.Slider(50,2000,value=100,step=10), | |
gr.Slider(0,2,value=0.7,step=0.1)], | |
'text', | |
theme=gr.themes.Base(primary_hue='blue',secondary_hue='cyan'), | |
description="Medical Trasncript Generator" | |
) | |
demo.launch() |