Spaces:
Running
Running
File size: 6,459 Bytes
1c919b3 1757118 1c919b3 1757118 d74dfe0 1c919b3 1757118 d74dfe0 1c919b3 1757118 1c919b3 1757118 1c919b3 1757118 1c919b3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 |
"""A gradio app that renders a static leaderboard. This is used for Hugging Face Space."""
import ast
import argparse
import glob
import pickle
import plotly
import gradio as gr
import numpy as np
import pandas as pd
import gradio as gr
import pandas as pd
from pathlib import Path
import json
from constants import *
from datetime import datetime, timezone
# from datasets import Dataset, load_dataset, concatenate_datasets
import os, uuid
from utils_display import model_info
from constants import column_names, LEADERBOARD_REMARKS, DEFAULT_K, LEADERBOARD_REMARKS_MAIN
import pytz
from data_utils import post_processing
# get the last updated time from the elo_ranks.all.jsonl file
LAST_UPDATED = None
# with open("_intro.md", "r") as f:
# INTRO_MD = f.read()
INTRO_MD = ""
with open("_about_us.md", "r") as f:
ABOUT_MD = f.read()
with open("_header.md", "r") as f:
HEADER_MD = f.read()
with open("_metrics.md", "r") as f:
METRICS_MD = f.read()
original_df = None
# available_models = [] # to be filled in later
available_models = list(model_info.keys())
def df_filters(mode_selection_radio, show_open_source_model_only):
global original_df
# remove the rows when the model contains "โ"
original_df = original_df[~original_df["Model"].str.contains("โ")]
modes = {
"greedy": ["greedy"],
"sampling (Temp=0.5)": ["sampling"],
"all": ["greedy", "sampling"]
}
# filter the df by the mode_selection_radio
default_main_df = original_df[original_df["Mode"].isin(modes[mode_selection_radio])]
default_main_df.insert(0, "", range(1, 1 + len(default_main_df)))
return default_main_df.copy()
def _gstr(text):
return gr.Text(text, visible=False)
def _tab_leaderboard():
global original_df, available_models
# with gr.TabItem("๐ Main", elem_id="od-benchmark-tab-table-ablation", id=0, elem_classes="subtab"):
if True:
default_main_df = original_df.copy()
# default_main_df.insert(0, "", range(1, 1 + len(default_main_df)))
# default_main_df_no_task = default_main_df.copy()
default_mode = "greedy"
default_main_df = df_filters(default_mode, False)
with gr.Row():
with gr.Column(scale=5):
mode_selection_radio = gr.Radio(["greedy", "all"], show_label=False, elem_id="rank-column-radio", value=default_mode)
# with gr.Row():
# with gr.Column(scale=2):
leaderboard_table = gr.components.Dataframe(
value=default_main_df,
datatype= ["number", "markdown", "markdown", "number"],
# max_rows=None,
height=6000,
elem_id="leaderboard-table",
interactive=False,
visible=True,
column_widths=[50, 260, 100, 100, 120, 120, 100,100,110,100],
wrap=True
# min_width=60,
)
# checkbox_show_task_categorized.change(fn=length_margin_change, inputs=[length_margin_choices, gr.Text("main", visible=False), checkbox_show_task_categorized, show_open_source_model_only, rank_column_radio], outputs=[leaderboard_table])
# show_open_source_model_only.change(fn=length_margin_change, inputs=[length_margin_choices, gr.Text("main", visible=False), checkbox_show_task_categorized, show_open_source_model_only, rank_column_radio], outputs=[leaderboard_table])
# rank_column_radio.change(fn=length_margin_change, inputs=[length_margin_choices, gr.Text("main", visible=False), checkbox_show_task_categorized, show_open_source_model_only, rank_column_radio], outputs=[leaderboard_table])
mode_selection_radio.change(fn=df_filters, inputs=[mode_selection_radio, _gstr("")], outputs=[leaderboard_table])
def _tab_submit():
pass
def build_demo():
global original_df, available_models, gpt4t_dfs, haiku_dfs, llama_dfs
with gr.Blocks(theme=gr.themes.Soft(), css=css, js=js_light) as demo:
gr.HTML(BANNER, elem_id="banner")
# convert LAST_UPDATED to the PDT time
LAST_UPDATED = datetime.now(pytz.timezone('US/Pacific')).strftime("%Y-%m-%d %H:%M:%S")
# header_md_text = HEADER_MD.replace("{model_num}", str(len(original_df["-1"]))).replace("{LAST_UPDATED}", str(LAST_UPDATED))
# gr.Markdown(header_md_text, elem_classes="markdown-text")
with gr.Tabs(elem_classes="tab-buttons") as tabs:
with gr.TabItem("๐
Leaderboard", elem_id="od-benchmark-tab-table", id=0):
_tab_leaderboard()
with gr.TabItem("๐ Submit Your Results", elem_id="od-benchmark-tab-table", id=3):
_tab_submit()
with gr.TabItem("๐ฎ About Us", elem_id="od-benchmark-tab-table", id=4):
gr.Markdown(ABOUT_MD, elem_classes="markdown-text")
with gr.Row():
with gr.Accordion("๐ Citation", open=False, elem_classes="accordion-label"):
gr.Textbox(
value=CITATION_TEXT,
lines=7,
label="Copy the BibTeX snippet to cite this source",
elem_id="citation-button",
show_copy_button=True)
# ).style(show_copy_button=True)
return demo
def data_load(result_file):
global original_df
print(f"Loading {result_file}")
column_names_main = column_names.copy()
# column_names_main.update({})
main_ordered_columns = ORDERED_COLUMN_NAMES
click_url = True
# read json file from the result_file
with open(result_file, "r") as f:
data = json.load(f)
# floatify the data, if possible
for d in data:
for k, v in d.items():
try:
d[k] = float(v)
except:
pass
original_df = pd.DataFrame(data)
original_df = post_processing(original_df, column_names_main, ordered_columns=main_ordered_columns, click_url=click_url, rank_column=RANKING_COLUMN)
# print(original_df.columns)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--share", action="store_true")
parser.add_argument("--result_file", help="Path to results table", default="ZeroEval-main/result_dirs/zebra-grid.summary.json")
args = parser.parse_args()
data_load(args.result_file)
print(original_df)
demo = build_demo()
demo.launch(share=args.share, height=3000, width="100%")
|