File size: 11,150 Bytes
d8b2714
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
import json
from typing import Any

from env import TASK, MODELS, ORG_NAME

import gradio as gr
from datasets import Dataset, load_dataset


KNOWN_METRIC_LABELS = {
    "accuracy": "Accuracy",
    "accuracy_stderr": "Accuracy (stderr)",
}


def aggregate_results() -> list:
    """Extract scores for each model and return list of result dictionaries."""
    all_results = []
    for model_path in MODELS:
        try:
            path = f"{ORG_NAME}/details_{model_path.replace('/', '__')}_private"
            dataset = load_dataset(path, "results", split="latest")
            config = json.loads(dataset["config_general"][0])
            results = json.loads(dataset["results"][0])

            _, model = model_path.split("/")
            duration = round(config["end_time"] - config["start_time"], 2)

            result = {
                "Model": model,
                "Duration (s)": duration,
            }

            for metric, metric_values in results.items():
                if metric == "all":
                    continue

                for raw_metric_name, metric_value in metric_values.items():
                    base_name = raw_metric_name.split("(")[0].strip()
                    pretty_label = KNOWN_METRIC_LABELS.get(base_name, raw_metric_name)

                    if isinstance(metric_value, float):
                        metric_value = round(metric_value, 3)

                    result[pretty_label] = metric_value

            all_results.append(result)

        except Exception as e:
            print(f"Error processing {model_path} {ORG_NAME}: {e}")

    # Sort final result by Accuracy
    all_results.sort(key=lambda r: r.get("Accuracy", 0), reverse=True)

    return all_results


def extract_dataviz() -> tuple[list[dict[str, Any]], list[dict[str, Any]], list[dict[str, Any]]]:
    """Extract best, worst, and all samples for visualization"""
    sample_index_map = {}

    for model_path in MODELS:
        try:
            dataset_path = f"{ORG_NAME}/details_{model_path.replace('/', '__')}_private"
            split_name = f"custom_{TASK.replace('/', '_')}_0"
            dataset = load_dataset(dataset_path, split_name, split="latest")

            for idx, row in enumerate(dataset):
                prompt = row["full_prompt"]
                gold = row.get("gold", "")
                gold = gold[0] if isinstance(gold, list) and gold else gold
                score = list(row["metrics"].values())[0]
                predictions = row.get("predictions", [])
                prediction = predictions[0] if predictions else ""

                if idx not in sample_index_map:
                    sample_index_map[idx] = {
                        "ix": idx,
                        "prompt": prompt,
                        "gold": gold,
                        "model_scores": [],
                        "models": [],
                    }

                if model_path not in sample_index_map[idx]["models"]:
                    sample_index_map[idx][f"{model_path}_score"] = row["metrics"]
                    sample_index_map[idx][f"{model_path}_prediction"] = prediction
                    sample_index_map[idx]["model_scores"].append(score)
                    sample_index_map[idx]["models"].append(model_path)

        except Exception as e:
            print(f"Error processing {model_path}: {e}")

    all_samples = sorted(sample_index_map.values(), key=lambda r: r["ix"])

    hard_samples = [sample for sample in all_samples if sum(sample["model_scores"]) == 0]

    easy_samples = [sample for sample in all_samples if sum(sample["model_scores"]) == len(sample["model_scores"])]

    return easy_samples, hard_samples, all_samples


def samples_to_box_display(samples: list[dict[str, Any]], example_index: int = 0) -> str:
    """
    Adapted from Nathan's code https://huggingface.co/spaces/SaylorTwift/OpenEvalsModelDetails/
    Support both light and dark themes
    """
    if not samples:
        return "No samples in this category!"

    sample = samples[example_index]
    outputs = []

    for model in sample["models"]:
        try:
            outputs.append({
                "Model": model,
                "Prediction": sample[f"{model}_prediction"],
                "Prompt": sample["prompt"],
                "Metrics": sample[f"{model}_score"],
                "Gold": sample["gold"],
            })
        except (KeyError, IndexError):
            continue

    if not outputs:
        return "No results found for the selected combination."

    # CSS for theme compatibility
    css = """
    <style>
    :root {
        --primary-bg: #f5f5f5;
        --secondary-bg: #ffffff;
        --gold-bg: #e6f3e6;
        --text-color: #333333;
        --border-color: #ddd;
    }

    @media (prefers-color-scheme: dark) {
        :root {
            --primary-bg: #2a2a2a;
            --secondary-bg: #333333;
            --gold-bg: #2a3a2a;
            --text-color: #e0e0e0;
            --border-color: #555;
        }
    }

    .box-container {
        max-width: 800px;
        margin: 0 auto;
        color: var(--text-color);
    }

    .gold-box {
        background: var(--gold-bg);
        padding: 20px;
        border-radius: 10px;
        margin-bottom: 20px;
    }

    .model-box {
        background: var(--primary-bg);
        padding: 20px;
        margin-bottom: 20px;
        border-radius: 10px;
    }

    .content-section {
        background: var(--secondary-bg);
        padding: 15px;
        border-radius: 5px;
        margin-top: 10px;
    }

    .metric-row {
        padding: 5px;
        border-bottom: 1px solid var(--border-color);
    }

    h2, h3 {
        color: var(--text-color);
    }

    pre, code {
        white-space: pre-wrap;
        word-wrap: break-word;
        margin: 0;
        color: var(--text-color);
    }
    </style>
    """

    # Create HTML output with all models
    html_output = f"{css}<div class='box-container'>\n\n"

    # Show gold answer at the top with distinct styling
    if outputs:
        html_output += "<div class='gold-box'>\n"
        html_output += "<h3 style='margin-top: 0;'>Ground Truth</h3>\n"
        html_output += "<div style='overflow-x: auto; max-width: 100%;'>\n"
        html_output += f"<pre><code>{outputs[0]['Gold']}</code></pre>\n"
        html_output += "</div>\n"
        html_output += "</div>\n"

    for output in outputs:
        html_output += "<div class='model-box'>\n"
        html_output += f"<h2 style='margin-top: 0;'>{output['Model']}</h2>\n"

        # Format metrics as a clean table
        html_output += "<details open style='margin-bottom: 15px;'>\n"
        html_output += "<summary><h3 style='display: inline; margin: 0;'>Metrics</h3></summary>\n"
        metrics = output["Metrics"]
        if isinstance(metrics, str):
            metrics = eval(metrics)
        html_output += "<div style='overflow-x: auto;'>\n"
        html_output += "<table style='width: 100%; margin: 10px 0; border-collapse: collapse;'>\n"
        for key, value in metrics.items():
            if isinstance(value, float):
                value = f"{value:.3f}"
            html_output += f"<tr class='metric-row'><td><strong>{key}</strong></td><td>{value}</td></tr>\n"
        html_output += "</table>\n"
        html_output += "</div>\n"
        html_output += "</details>\n\n"

        # Handle prompt formatting with better styling
        html_output += "<details style='margin-bottom: 15px;'>\n"
        html_output += "<summary><h3 style='display: inline; margin: 0;'>Prompt</h3></summary>\n"
        html_output += "<div class='content-section'>\n"

        prompt_text = output["Prompt"]
        if isinstance(prompt_text, list):
            for i, msg in enumerate(prompt_text):
                if isinstance(msg, dict) and "content" in msg:
                    role = msg.get("role", "message").title()
                    html_output += "<div style='margin-bottom: 10px;'>\n"
                    html_output += f"<strong>{role}:</strong>\n"
                    html_output += "<div style='overflow-x: auto;'>\n"
                    html_output += f"<pre><code>{msg['content']}</code></pre>\n"
                    html_output += "</div>\n"
                    html_output += "</div>\n"
                else:
                    html_output += "<div style='margin-bottom: 10px;'>\n"
                    html_output += "<div style='overflow-x: auto;'>\n"
                    html_output += f"<pre><code>{json.dumps(msg, indent=2)}</code></pre>\n"
                    html_output += "</div>\n"
                    html_output += "</div>\n"
        else:
            html_output += "<div style='overflow-x: auto;'>\n"
            if isinstance(prompt_text, dict) and "content" in prompt_text:
                html_output += f"<pre><code>{prompt_text['content']}</code></pre>\n"
            else:
                html_output += f"<pre><code>{prompt_text}</code></pre>\n"
            html_output += "</div>\n"

        html_output += "</div>\n"
        html_output += "</details>\n\n"

        # Style prediction output - now in a collapsible section
        html_output += "<details open style='margin-bottom: 15px;'>\n"
        html_output += "<summary><h3 style='display: inline; margin: 0;'>Prediction</h3>"
        # Add word count in a muted style
        word_count = len(output["Prediction"].split())
        html_output += f"<span style='color: inherit; opacity: 0.7; font-size: 0.8em; margin-left: 10px;'>({word_count} words)</span>"
        html_output += "</summary>\n"
        html_output += "<div class='content-section'>\n"
        html_output += "<div style='overflow-x: auto;'>\n"
        html_output += f"<pre><code>{output['Prediction']}</code></pre>\n"
        html_output += "</div>\n"
        html_output += "</div>\n"
        html_output += "</details>\n"
        html_output += "</div>\n\n"

    html_output += "</div>"
    return html_output


def run_pipeline(samples_ix: int = 0) -> tuple[Any, Any, Any, Any]:
    """Run evaluation pipeline and return results for display"""
    results = aggregate_results()
    easy_samples, hard_samples, all_samples = extract_dataviz()

    return (
        gr.Dataframe(Dataset.from_list(results).to_pandas(), visible=True),
        gr.HTML(
            samples_to_box_display(easy_samples, samples_ix),
            label="Easiest samples (always found)",
            visible=True,
        ),
        gr.HTML(
            samples_to_box_display(hard_samples, samples_ix),
            label="Hardest samples (always failed)",
            visible=True,
        ),
        gr.HTML(
            samples_to_box_display(all_samples, samples_ix),
            label="All samples",
            visible=True,
        ),
    )


def update_examples(samples_ix: int = 0) -> tuple[str, str, str]:
    """Return HTML strings for easy, hard, and all samples"""
    easy_samples, hard_samples, all_samples = extract_dataviz()

    return (
        samples_to_box_display(easy_samples, samples_ix),
        samples_to_box_display(hard_samples, samples_ix),
        samples_to_box_display(all_samples, samples_ix),
    )