alozowski HF Staff commited on
Commit
cf4f96c
·
verified ·
1 Parent(s): 33ac182

Upload folder using huggingface_hub

Browse files
Files changed (5) hide show
  1. __pycache__/env.cpython-312.pyc +0 -0
  2. app.py +26 -0
  3. env.py +17 -0
  4. requirements.txt +2 -0
  5. utils.py +310 -0
__pycache__/env.cpython-312.pyc ADDED
Binary file (701 Bytes). View file
 
app.py ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from env import TASK
2
+ from utils import run_pipeline, update_examples
3
+
4
+ import gradio as gr
5
+
6
+
7
+ with gr.Blocks(
8
+ title="YourBench Leaderboard",
9
+ css="button { margin: 0 10px; padding: 5px 15px; }",
10
+ ) as app:
11
+ # DISPLAY TABLE AND ANALYSIS
12
+ title = gr.Markdown(f"YourBench auto-Leaderboard for {TASK}")
13
+ leaderboard = gr.DataFrame(label="Results", interactive=False)
14
+ samples_ix = gr.Number(label="Example Index", value=0, step=1, info="Navigate through different examples")
15
+ with gr.Tab("Hardest samples"):
16
+ hard_samples = gr.HTML()
17
+ with gr.Tab("Easiest samples"):
18
+ easy_samples = gr.HTML()
19
+ with gr.Tab("All samples"):
20
+ all_samples = gr.HTML()
21
+
22
+ samples_ix.change(update_examples, samples_ix, [easy_samples, hard_samples, all_samples])
23
+
24
+ app.load(run_pipeline, [samples_ix], [leaderboard, easy_samples, hard_samples, all_samples])
25
+
26
+ app.launch()
env.py ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+
3
+
4
+ INIT_MODELS = [
5
+ # 70B
6
+ ("Qwen/Qwen2.5-72B-Instruct", "novita"),
7
+ ("meta-llama/Llama-3.3-70B-Instruct", "novita"),
8
+ ("deepseek-ai/DeepSeek-R1-Distill-Llama-70B", "novita"),
9
+ # 20 to 30B
10
+ ("Qwen/QwQ-32B", "novita"),
11
+ ("mistralai/Mistral-Small-24B-Instruct-2501", "together"),
12
+ ]
13
+ MODELS = [m[0] for m in INIT_MODELS]
14
+ TASK = os.getenv("TASK")
15
+ # With storage
16
+ HF_TOKEN = os.getenv("HF_TOKEN")
17
+ ORG_NAME = os.getenv("ORG_NAME")
requirements.txt ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ datasets
2
+ huggingface_hub
utils.py ADDED
@@ -0,0 +1,310 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ from typing import Any
3
+
4
+ from env import TASK, MODELS, ORG_NAME
5
+
6
+ import gradio as gr
7
+ from datasets import Dataset, load_dataset
8
+
9
+ KNOWN_METRIC_LABELS = {
10
+ "accuracy": "Accuracy",
11
+ "accuracy_stderr": "Accuracy (stderr)",
12
+ }
13
+
14
+ def aggregate_results() -> list:
15
+ """Extract scores for each model and return list of result dictionaries."""
16
+ all_results = []
17
+ for model_path in MODELS:
18
+ try:
19
+ path = f"{ORG_NAME}/details_{model_path.replace('/', '__')}_private"
20
+ dataset = load_dataset(path, "results", split="latest")
21
+ config = json.loads(dataset["config_general"][0])
22
+ results = json.loads(dataset["results"][0])
23
+
24
+ _, model = model_path.split("/")
25
+ duration = round(config["end_time"] - config["start_time"], 2)
26
+
27
+ result = {
28
+ "Model": model,
29
+ "Duration (s)": duration,
30
+ }
31
+
32
+ for metric, metric_values in results.items():
33
+ if metric == "all":
34
+ continue
35
+
36
+ for raw_metric_name, metric_value in metric_values.items():
37
+ base_name = raw_metric_name.split("(")[0].strip()
38
+ pretty_label = KNOWN_METRIC_LABELS.get(base_name, raw_metric_name)
39
+
40
+ if isinstance(metric_value, float):
41
+ metric_value = round(metric_value, 3)
42
+
43
+ result[pretty_label] = metric_value
44
+
45
+ all_results.append(result)
46
+
47
+ except Exception as e:
48
+ print(f"Error processing {model_path} {ORG_NAME}: {e}")
49
+
50
+ # Sort final result by Accuracy
51
+ all_results.sort(key=lambda r: r.get("Accuracy", 0), reverse=True)
52
+
53
+ return all_results
54
+
55
+
56
+ def extract_dataviz() -> tuple[list[dict[str, Any]], list[dict[str, Any]], list[dict[str, Any]]]:
57
+ """Extract best, worst, and all samples for visualization"""
58
+ sample_index_map = {}
59
+
60
+ for model_path in MODELS:
61
+ try:
62
+ dataset_path = f"{ORG_NAME}/details_{model_path.replace('/', '__')}_private"
63
+ split_name = f"custom_{TASK.replace('/', '_')}_0"
64
+ dataset = load_dataset(dataset_path, split_name, split="latest")
65
+
66
+ for idx, row in enumerate(dataset):
67
+ prompt = row["full_prompt"]
68
+ gold = row.get("gold", "")
69
+ gold = gold[0] if isinstance(gold, list) and gold else gold
70
+ score = list(row["metrics"].values())[0]
71
+ predictions = row.get("predictions", [])
72
+ prediction = predictions[0] if predictions else ""
73
+
74
+ if idx not in sample_index_map:
75
+ sample_index_map[idx] = {
76
+ "ix": idx,
77
+ "prompt": prompt,
78
+ "gold": gold,
79
+ "model_scores": [],
80
+ "models": [],
81
+ }
82
+
83
+ if model_path not in sample_index_map[idx]["models"]:
84
+ sample_index_map[idx][f"{model_path}_score"] = row["metrics"]
85
+ sample_index_map[idx][f"{model_path}_prediction"] = prediction
86
+ sample_index_map[idx]["model_scores"].append(score)
87
+ sample_index_map[idx]["models"].append(model_path)
88
+
89
+ except Exception as e:
90
+ print(f"Error processing {model_path}: {e}")
91
+
92
+ all_samples = sorted(sample_index_map.values(), key=lambda r: r["ix"])
93
+
94
+ hard_samples = [sample for sample in all_samples if sum(sample["model_scores"]) == 0]
95
+
96
+ easy_samples = [sample for sample in all_samples if sum(sample["model_scores"]) == len(sample["model_scores"])]
97
+
98
+ return easy_samples, hard_samples, all_samples
99
+
100
+
101
+ def samples_to_box_display(samples: list[dict[str, Any]], example_index: int = 0) -> str:
102
+ """
103
+ Adapted from Nathan's code https://huggingface.co/spaces/SaylorTwift/OpenEvalsModelDetails/
104
+ Support both light and dark themes
105
+ """
106
+ if not samples:
107
+ return "No samples in this category!"
108
+
109
+ sample = samples[example_index]
110
+ outputs = []
111
+
112
+ for model in sample["models"]:
113
+ try:
114
+ outputs.append({
115
+ "Model": model,
116
+ "Prediction": sample[f"{model}_prediction"],
117
+ "Prompt": sample["prompt"],
118
+ "Metrics": sample[f"{model}_score"],
119
+ "Gold": sample["gold"],
120
+ })
121
+ except (KeyError, IndexError):
122
+ continue
123
+
124
+ if not outputs:
125
+ return "No results found for the selected combination."
126
+
127
+ # CSS for theme compatibility
128
+ css = """
129
+ <style>
130
+ :root {
131
+ --primary-bg: #f5f5f5;
132
+ --secondary-bg: #ffffff;
133
+ --gold-bg: #e6f3e6;
134
+ --text-color: #333333;
135
+ --border-color: #ddd;
136
+ }
137
+
138
+ @media (prefers-color-scheme: dark) {
139
+ :root {
140
+ --primary-bg: #2a2a2a;
141
+ --secondary-bg: #333333;
142
+ --gold-bg: #2a3a2a;
143
+ --text-color: #e0e0e0;
144
+ --border-color: #555;
145
+ }
146
+ }
147
+
148
+ .box-container {
149
+ max-width: 800px;
150
+ margin: 0 auto;
151
+ color: var(--text-color);
152
+ }
153
+
154
+ .gold-box {
155
+ background: var(--gold-bg);
156
+ padding: 20px;
157
+ border-radius: 10px;
158
+ margin-bottom: 20px;
159
+ }
160
+
161
+ .model-box {
162
+ background: var(--primary-bg);
163
+ padding: 20px;
164
+ margin-bottom: 20px;
165
+ border-radius: 10px;
166
+ }
167
+
168
+ .content-section {
169
+ background: var(--secondary-bg);
170
+ padding: 15px;
171
+ border-radius: 5px;
172
+ margin-top: 10px;
173
+ }
174
+
175
+ .metric-row {
176
+ padding: 5px;
177
+ border-bottom: 1px solid var(--border-color);
178
+ }
179
+
180
+ h2, h3 {
181
+ color: var(--text-color);
182
+ }
183
+
184
+ pre, code {
185
+ white-space: pre-wrap;
186
+ word-wrap: break-word;
187
+ margin: 0;
188
+ color: var(--text-color);
189
+ }
190
+ </style>
191
+ """
192
+
193
+ # Create HTML output with all models
194
+ html_output = f"{css}<div class='box-container'>\n\n"
195
+
196
+ # Show gold answer at the top with distinct styling
197
+ if outputs:
198
+ html_output += "<div class='gold-box'>\n"
199
+ html_output += "<h3 style='margin-top: 0;'>Ground Truth</h3>\n"
200
+ html_output += "<div style='overflow-x: auto; max-width: 100%;'>\n"
201
+ html_output += f"<pre><code>{outputs[0]['Gold']}</code></pre>\n"
202
+ html_output += "</div>\n"
203
+ html_output += "</div>\n"
204
+
205
+ for output in outputs:
206
+ html_output += "<div class='model-box'>\n"
207
+ html_output += f"<h2 style='margin-top: 0;'>{output['Model']}</h2>\n"
208
+
209
+ # Format metrics as a clean table
210
+ html_output += "<details open style='margin-bottom: 15px;'>\n"
211
+ html_output += "<summary><h3 style='display: inline; margin: 0;'>Metrics</h3></summary>\n"
212
+ metrics = output["Metrics"]
213
+ if isinstance(metrics, str):
214
+ metrics = eval(metrics)
215
+ html_output += "<div style='overflow-x: auto;'>\n"
216
+ html_output += "<table style='width: 100%; margin: 10px 0; border-collapse: collapse;'>\n"
217
+ for key, value in metrics.items():
218
+ if isinstance(value, float):
219
+ value = f"{value:.3f}"
220
+ html_output += f"<tr class='metric-row'><td><strong>{key}</strong></td><td>{value}</td></tr>\n"
221
+ html_output += "</table>\n"
222
+ html_output += "</div>\n"
223
+ html_output += "</details>\n\n"
224
+
225
+ # Handle prompt formatting with better styling
226
+ html_output += "<details style='margin-bottom: 15px;'>\n"
227
+ html_output += "<summary><h3 style='display: inline; margin: 0;'>Prompt</h3></summary>\n"
228
+ html_output += "<div class='content-section'>\n"
229
+
230
+ prompt_text = output["Prompt"]
231
+ if isinstance(prompt_text, list):
232
+ for i, msg in enumerate(prompt_text):
233
+ if isinstance(msg, dict) and "content" in msg:
234
+ role = msg.get("role", "message").title()
235
+ html_output += "<div style='margin-bottom: 10px;'>\n"
236
+ html_output += f"<strong>{role}:</strong>\n"
237
+ html_output += "<div style='overflow-x: auto;'>\n"
238
+ html_output += f"<pre><code>{msg['content']}</code></pre>\n"
239
+ html_output += "</div>\n"
240
+ html_output += "</div>\n"
241
+ else:
242
+ html_output += "<div style='margin-bottom: 10px;'>\n"
243
+ html_output += "<div style='overflow-x: auto;'>\n"
244
+ html_output += f"<pre><code>{json.dumps(msg, indent=2)}</code></pre>\n"
245
+ html_output += "</div>\n"
246
+ html_output += "</div>\n"
247
+ else:
248
+ html_output += "<div style='overflow-x: auto;'>\n"
249
+ if isinstance(prompt_text, dict) and "content" in prompt_text:
250
+ html_output += f"<pre><code>{prompt_text['content']}</code></pre>\n"
251
+ else:
252
+ html_output += f"<pre><code>{prompt_text}</code></pre>\n"
253
+ html_output += "</div>\n"
254
+
255
+ html_output += "</div>\n"
256
+ html_output += "</details>\n\n"
257
+
258
+ # Style prediction output - now in a collapsible section
259
+ html_output += "<details open style='margin-bottom: 15px;'>\n"
260
+ html_output += "<summary><h3 style='display: inline; margin: 0;'>Prediction</h3>"
261
+ # Add word count in a muted style
262
+ word_count = len(output["Prediction"].split())
263
+ html_output += f"<span style='color: inherit; opacity: 0.7; font-size: 0.8em; margin-left: 10px;'>({word_count} words)</span>"
264
+ html_output += "</summary>\n"
265
+ html_output += "<div class='content-section'>\n"
266
+ html_output += "<div style='overflow-x: auto;'>\n"
267
+ html_output += f"<pre><code>{output['Prediction']}</code></pre>\n"
268
+ html_output += "</div>\n"
269
+ html_output += "</div>\n"
270
+ html_output += "</details>\n"
271
+ html_output += "</div>\n\n"
272
+
273
+ html_output += "</div>"
274
+ return html_output
275
+
276
+
277
+ def run_pipeline(samples_ix: int = 0) -> tuple[Any, Any, Any, Any]:
278
+ """Run evaluation pipeline and return results for display"""
279
+ results = aggregate_results()
280
+ easy_samples, hard_samples, all_samples = extract_dataviz()
281
+
282
+ return (
283
+ gr.Dataframe(Dataset.from_list(results).to_pandas(), visible=True),
284
+ gr.HTML(
285
+ samples_to_box_display(easy_samples, samples_ix),
286
+ label="Easiest samples (always found)",
287
+ visible=True,
288
+ ),
289
+ gr.HTML(
290
+ samples_to_box_display(hard_samples, samples_ix),
291
+ label="Hardest samples (always failed)",
292
+ visible=True,
293
+ ),
294
+ gr.HTML(
295
+ samples_to_box_display(all_samples, samples_ix),
296
+ label="All samples",
297
+ visible=True,
298
+ ),
299
+ )
300
+
301
+
302
+ def update_examples(samples_ix: int = 0) -> tuple[str, str, str]:
303
+ """Return HTML strings for easy, hard, and all samples"""
304
+ easy_samples, hard_samples, all_samples = extract_dataviz()
305
+
306
+ return (
307
+ samples_to_box_display(easy_samples, samples_ix),
308
+ samples_to_box_display(hard_samples, samples_ix),
309
+ samples_to_box_display(all_samples, samples_ix),
310
+ )