File size: 1,008 Bytes
e3dc88d
18d10d8
f80ec8d
18d10d8
f80ec8d
 
 
18d10d8
f80ec8d
 
18d10d8
f80ec8d
 
18d10d8
f80ec8d
18d10d8
f80ec8d
18d10d8
f80ec8d
 
18d10d8
f80ec8d
 
 
 
18d10d8
 
 
 
170fb07
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
import streamlit as st
from transformers import AutoTokenizer, TextGenerationPipeline
from auto_gptq import AutoGPTQForCausalLM

# Load the tokenizer and model
pretrained_model_dir = "TheBloke/Llama-2-7b-Chat-GPTQ"
quantized_model_dir = "amanchahar/llama2_finetune_Restaurants"

tokenizer = AutoTokenizer.from_pretrained(pretrained_model_dir, use_fast=True)
model = AutoGPTQForCausalLM.from_quantized(quantized_model_dir, device="cuda:0")

# Create a text generation pipeline
pipeline = TextGenerationPipeline(model=model, tokenizer=tokenizer)

# Define the Streamlit app
def main():
    st.title("Restaurants Auto-GPTQ Text Generation")

    # User input text box
    user_input = st.text_input("Enter your query:", "auto-gptq is")

    if st.button("Generate"):
        # Generate response based on user input
        generated_text = pipeline(user_input)[0]["generated_text"]
        st.markdown(f"**Generated Response:** {generated_text}")

if __name__ == "__main__":
    main()