File size: 1,008 Bytes
e3dc88d 18d10d8 f80ec8d 18d10d8 f80ec8d 18d10d8 f80ec8d 18d10d8 f80ec8d 18d10d8 f80ec8d 18d10d8 f80ec8d 18d10d8 f80ec8d 18d10d8 f80ec8d 18d10d8 170fb07 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 |
import streamlit as st
from transformers import AutoTokenizer, TextGenerationPipeline
from auto_gptq import AutoGPTQForCausalLM
# Load the tokenizer and model
pretrained_model_dir = "TheBloke/Llama-2-7b-Chat-GPTQ"
quantized_model_dir = "amanchahar/llama2_finetune_Restaurants"
tokenizer = AutoTokenizer.from_pretrained(pretrained_model_dir, use_fast=True)
model = AutoGPTQForCausalLM.from_quantized(quantized_model_dir, device="cuda:0")
# Create a text generation pipeline
pipeline = TextGenerationPipeline(model=model, tokenizer=tokenizer)
# Define the Streamlit app
def main():
st.title("Restaurants Auto-GPTQ Text Generation")
# User input text box
user_input = st.text_input("Enter your query:", "auto-gptq is")
if st.button("Generate"):
# Generate response based on user input
generated_text = pipeline(user_input)[0]["generated_text"]
st.markdown(f"**Generated Response:** {generated_text}")
if __name__ == "__main__":
main()
|