Spaces:
Running
Running
Upload 2 files
Browse files- app_utils.py +369 -0
- vits-piper-fa-ganji.onnx +3 -0
app_utils.py
ADDED
@@ -0,0 +1,369 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
+
import shutil
|
4 |
+
import subprocess
|
5 |
+
import requests
|
6 |
+
import tarfile
|
7 |
+
from pathlib import Path
|
8 |
+
import soundfile as sf
|
9 |
+
import sherpa_onnx
|
10 |
+
import numpy as np
|
11 |
+
|
12 |
+
|
13 |
+
models = [
|
14 |
+
['mms fa','https://huggingface.co/willwade/mms-tts-multilingual-models-onnx/resolve/main/fas',"🌠 راد",'https://huggingface.co/facebook/mms-tts-fas'],
|
15 |
+
['coqui-vits-female1-karim23657','https://huggingface.co/karim23657/persian-tts-vits/tree/main/persian-tts-female1-vits-coqui',"🌺 نگار",'https://huggingface.co/Kamtera/persian-tts-female1-vits'],
|
16 |
+
['coqui-vits-male1-karim23657','https://huggingface.co/karim23657/persian-tts-vits/tree/main/persian-tts-male1-vits-coqui',"🌟 آرش",'https://huggingface.co/Kamtera/persian-tts-male1-vits'],
|
17 |
+
['coqui-vits-male-karim23657','https://huggingface.co/karim23657/persian-tts-vits/tree/main/male-male-coqui-vits',"🦁 کیان",'https://huggingface.co/Kamtera/persian-tts-male-vits'],
|
18 |
+
['coqui-vits-female-karim23657','https://huggingface.co/karim23657/persian-tts-vits/tree/main/female-female-coqui-vits',"🌷 مهتاب",'https://huggingface.co/Kamtera/persian-tts-female-vits'],
|
19 |
+
['coqui-vits-female-GPTInformal-karim23657','https://huggingface.co/karim23657/persian-tts-vits/tree/main/female-GPTInformal-coqui-vits',"🌼 شیوا",'https://huggingface.co/karim23657/persian-tts-female-GPTInformal-Persian-vits'],
|
20 |
+
['coqui-vits-male-SmartGitiCorp','https://huggingface.co/karim23657/persian-tts-vits/tree/main/male-SmartGitiCorp-coqui-vits',"🚀 بهمن",'https://huggingface.co/SmartGitiCorp/persian_tts_vits'],
|
21 |
+
['vits-piper-fa-ganji','https://huggingface.co/karim23657/persian-tts-vits/tree/main/vits-piper-fa-ganji',"🚀 برنا",'https://huggingface.co/SadeghK/persian-text-to-speech'],
|
22 |
+
['vits-piper-fa-ganji-adabi','https://huggingface.co/karim23657/persian-tts-vits/tree/main/vits-piper-fa-ganji-adabi',"🚀 برنا-1",'https://huggingface.co/SadeghK/persian-text-to-speech'],
|
23 |
+
['vits-piper-fa-gyro-medium','https://github.com/k2-fsa/sherpa-onnx/releases/download/tts-models/vits-piper-fa_IR-gyro-medium.tar.bz2',"💧 نیما",'https://huggingface.co/gyroing/Persian-Piper-Model-gyro'],
|
24 |
+
['piper-fa-amir-medium','https://github.com/k2-fsa/sherpa-onnx/releases/download/tts-models/vits-piper-fa_IR-amir-medium.tar.bz2',"⚡️ آریا",'https://huggingface.co/SadeghK/persian-text-to-speech'],
|
25 |
+
['vits-mimic3-fa-haaniye_low','https://github.com/k2-fsa/sherpa-onnx/releases/download/tts-models/vits-mimic3-fa-haaniye_low.tar.bz2',"🌹 ریما",'https://github.com/MycroftAI/mimic3'],
|
26 |
+
['vits-piper-fa_en-rezahedayatfar-ibrahimwalk-medium','https://github.com/k2-fsa/sherpa-onnx/releases/download/tts-models/vits-piper-fa_en-rezahedayatfar-ibrahimwalk-medium.tar.bz2',"🌠 پیام",'https://huggingface.co/mah92/persian-english-piper-tts-model'],
|
27 |
+
]
|
28 |
+
|
29 |
+
def download_and_extract_model(url, destination):
|
30 |
+
"""Download and extract the model files."""
|
31 |
+
print(f"Downloading from URL: {url}")
|
32 |
+
print(f"Destination: {destination}")
|
33 |
+
|
34 |
+
# Convert Hugging Face URL format if needed
|
35 |
+
if "huggingface.co" in url:
|
36 |
+
# Replace /tree/main/ with /resolve/main/ for direct file download
|
37 |
+
base_url = url.replace("/tree/main/", "/resolve/main/")
|
38 |
+
model_id = base_url.split("/")[-1]
|
39 |
+
|
40 |
+
# Check if this is an MMS model
|
41 |
+
is_mms_model = True
|
42 |
+
|
43 |
+
if is_mms_model:
|
44 |
+
# MMS models have both model.onnx and tokens.txt
|
45 |
+
model_url = f"{base_url}/model.onnx"
|
46 |
+
tokens_url = f"{base_url}/tokens.txt"
|
47 |
+
|
48 |
+
# Download model.onnx
|
49 |
+
print("Downloading model.onnx...")
|
50 |
+
model_path = os.path.join(destination, "model.onnx")
|
51 |
+
response = requests.get(model_url, stream=True)
|
52 |
+
if response.status_code != 200:
|
53 |
+
raise Exception(f"Failed to download model from {model_url}. Status code: {response.status_code}")
|
54 |
+
|
55 |
+
total_size = int(response.headers.get('content-length', 0))
|
56 |
+
block_size = 8192
|
57 |
+
downloaded = 0
|
58 |
+
|
59 |
+
print(f"Total size: {total_size / (1024*1024):.1f} MB")
|
60 |
+
with open(model_path, "wb") as f:
|
61 |
+
for chunk in response.iter_content(chunk_size=block_size):
|
62 |
+
if chunk:
|
63 |
+
f.write(chunk)
|
64 |
+
downloaded += len(chunk)
|
65 |
+
if total_size > 0:
|
66 |
+
percent = int((downloaded / total_size) * 100)
|
67 |
+
if percent % 10 == 0:
|
68 |
+
print(f" {percent}%", end="", flush=True)
|
69 |
+
print("\nModel download complete")
|
70 |
+
|
71 |
+
# Download tokens.txt
|
72 |
+
print("Downloading tokens.txt...")
|
73 |
+
tokens_path = os.path.join(destination, "tokens.txt")
|
74 |
+
response = requests.get(tokens_url, stream=True)
|
75 |
+
if response.status_code != 200:
|
76 |
+
raise Exception(f"Failed to download tokens from {tokens_url}. Status code: {response.status_code}")
|
77 |
+
|
78 |
+
with open(tokens_path, "wb") as f:
|
79 |
+
f.write(response.content)
|
80 |
+
print("Tokens download complete")
|
81 |
+
|
82 |
+
return
|
83 |
+
else:
|
84 |
+
# Other models are stored as tar.bz2 files
|
85 |
+
url = f"{base_url}.tar.bz2"
|
86 |
+
|
87 |
+
# Try the URL
|
88 |
+
response = requests.get(url, stream=True)
|
89 |
+
if response.status_code != 200:
|
90 |
+
raise Exception(f"Failed to download model from {url}. Status code: {response.status_code}")
|
91 |
+
|
92 |
+
# Check if this is a Git LFS file pointer
|
93 |
+
content_start = response.content[:100].decode('utf-8', errors='ignore')
|
94 |
+
if content_start.startswith('version https://git-lfs.github.com/spec/v1'):
|
95 |
+
raise Exception(f"Received Git LFS pointer instead of file content from {url}")
|
96 |
+
|
97 |
+
# Create model directory if it doesn't exist
|
98 |
+
os.makedirs(destination, exist_ok=True)
|
99 |
+
|
100 |
+
# For non-MMS models, handle tar.bz2 files
|
101 |
+
tar_path = os.path.join(destination, "model.tar.bz2")
|
102 |
+
|
103 |
+
# Download the file
|
104 |
+
print("Downloading model archive...")
|
105 |
+
response = requests.get(url, stream=True)
|
106 |
+
total_size = int(response.headers.get('content-length', 0))
|
107 |
+
block_size = 8192
|
108 |
+
downloaded = 0
|
109 |
+
|
110 |
+
print(f"Total size: {total_size / (1024*1024):.1f} MB")
|
111 |
+
with open(tar_path, "wb") as f:
|
112 |
+
for chunk in response.iter_content(chunk_size=block_size):
|
113 |
+
if chunk:
|
114 |
+
f.write(chunk)
|
115 |
+
downloaded += len(chunk)
|
116 |
+
if total_size > 0:
|
117 |
+
percent = int((downloaded / total_size) * 100)
|
118 |
+
if percent % 10 == 0:
|
119 |
+
print(f" {percent}%", end="", flush=True)
|
120 |
+
print("\nDownload complete")
|
121 |
+
|
122 |
+
# Extract the tar.bz2 file
|
123 |
+
print(f"Extracting {tar_path} to {destination}")
|
124 |
+
try:
|
125 |
+
with tarfile.open(tar_path, "r:bz2") as tar:
|
126 |
+
tar.extractall(path=destination)
|
127 |
+
os.remove(tar_path)
|
128 |
+
print("Extraction complete")
|
129 |
+
except Exception as e:
|
130 |
+
print(f"Error during extraction: {str(e)}")
|
131 |
+
raise
|
132 |
+
|
133 |
+
print("Contents of destination directory:")
|
134 |
+
for root, dirs, files in os.walk(destination):
|
135 |
+
print(f"\nDirectory: {root}")
|
136 |
+
if dirs:
|
137 |
+
print(" Subdirectories:", dirs)
|
138 |
+
if files:
|
139 |
+
print(" Files:", files)
|
140 |
+
|
141 |
+
def dl_espeak_data():
|
142 |
+
# Download the file
|
143 |
+
tar_path='espeak-ng-data.tar.bz2'
|
144 |
+
print("Downloading model archive...")
|
145 |
+
response = requests.get('https://github.com/k2-fsa/sherpa-onnx/releases/download/tts-models/espeak-ng-data.tar.bz2', stream=True)
|
146 |
+
total_size = int(response.headers.get('content-length', 0))
|
147 |
+
block_size = 8192
|
148 |
+
downloaded = 0
|
149 |
+
|
150 |
+
print(f"Total size: {total_size / (1024*1024):.1f} MB")
|
151 |
+
with open(tar_path, "wb") as f:
|
152 |
+
for chunk in response.iter_content(chunk_size=block_size):
|
153 |
+
if chunk:
|
154 |
+
f.write(chunk)
|
155 |
+
downloaded += len(chunk)
|
156 |
+
if total_size > 0:
|
157 |
+
percent = int((downloaded / total_size) * 100)
|
158 |
+
if percent % 10 == 0:
|
159 |
+
print(f" {percent}%", end="", flush=True)
|
160 |
+
print("\nDownload complete")
|
161 |
+
|
162 |
+
# Extract the tar.bz2 file
|
163 |
+
destination=os.path.dirname(os.path.abspath(__file__))
|
164 |
+
print(f"Extracting {tar_path} to {destination}")
|
165 |
+
try:
|
166 |
+
with tarfile.open(tar_path, "r:bz2") as tar:
|
167 |
+
tar.extractall(path=destination)
|
168 |
+
os.remove(tar_path)
|
169 |
+
print("Extraction complete")
|
170 |
+
except Exception as e:
|
171 |
+
print(f"Error during extraction: {str(e)}")
|
172 |
+
raise
|
173 |
+
|
174 |
+
print("Contents of destination directory:")
|
175 |
+
for root, dirs, files in os.walk(destination):
|
176 |
+
print(f"\nDirectory: {root}")
|
177 |
+
if dirs:
|
178 |
+
print(" Subdirectories:", dirs)
|
179 |
+
if files:
|
180 |
+
print(" Files:", files)
|
181 |
+
|
182 |
+
dl_espeak_data()
|
183 |
+
|
184 |
+
def find_model_files(model_dir):
|
185 |
+
"""Find model files in the given directory and its subdirectories."""
|
186 |
+
model_files = {}
|
187 |
+
|
188 |
+
# Check if this is an MMS model
|
189 |
+
is_mms = True
|
190 |
+
|
191 |
+
for root, _, files in os.walk(model_dir):
|
192 |
+
for file in files:
|
193 |
+
file_path = os.path.join(root, file)
|
194 |
+
|
195 |
+
# Model file
|
196 |
+
if file.endswith('.onnx'):
|
197 |
+
model_files['model'] = file_path
|
198 |
+
|
199 |
+
# Tokens file
|
200 |
+
elif file == 'tokens.txt':
|
201 |
+
model_files['tokens'] = file_path
|
202 |
+
|
203 |
+
# Lexicon file (only for non-MMS models)
|
204 |
+
elif file == 'lexicon.txt' and not is_mms:
|
205 |
+
model_files['lexicon'] = file_path
|
206 |
+
|
207 |
+
# Create empty lexicon file if needed (only for non-MMS models)
|
208 |
+
if not is_mms and 'model' in model_files and 'lexicon' not in model_files:
|
209 |
+
model_dir = os.path.dirname(model_files['model'])
|
210 |
+
lexicon_path = os.path.join(model_dir, 'lexicon.txt')
|
211 |
+
with open(lexicon_path, 'w', encoding='utf-8') as f:
|
212 |
+
pass # Create empty file
|
213 |
+
model_files['lexicon'] = lexicon_path
|
214 |
+
|
215 |
+
return model_files if 'model' in model_files else {}
|
216 |
+
|
217 |
+
def generate_audio(text, model_info):
|
218 |
+
"""Generate audio from text using the specified model."""
|
219 |
+
try:
|
220 |
+
model_dir = os.path.join("./models", model_info)
|
221 |
+
|
222 |
+
print(f"\nLooking for model in: {model_dir}")
|
223 |
+
|
224 |
+
# Download model if it doesn't exist
|
225 |
+
if not os.path.exists(model_dir):
|
226 |
+
print(f"Model directory doesn't exist, downloading {model_info}...")
|
227 |
+
os.makedirs(model_dir, exist_ok=True)
|
228 |
+
for i in models:
|
229 |
+
if model_info == i[2]:
|
230 |
+
model_url=i[1]
|
231 |
+
download_and_extract_model(model_url, model_dir)
|
232 |
+
|
233 |
+
print(f"Contents of {model_dir}:")
|
234 |
+
for item in os.listdir(model_dir):
|
235 |
+
item_path = os.path.join(model_dir, item)
|
236 |
+
if os.path.isdir(item_path):
|
237 |
+
print(f" Directory: {item}")
|
238 |
+
print(f" Contents: {os.listdir(item_path)}")
|
239 |
+
else:
|
240 |
+
print(f" File: {item}")
|
241 |
+
|
242 |
+
# Find and validate model files
|
243 |
+
model_files = find_model_files(model_dir)
|
244 |
+
if not model_files or 'model' not in model_files:
|
245 |
+
raise ValueError(f"Could not find required model files in {model_dir}")
|
246 |
+
|
247 |
+
print("\nFound model files:")
|
248 |
+
print(f"Model: {model_files['model']}")
|
249 |
+
print(f"Tokens: {model_files.get('tokens', 'Not found')}")
|
250 |
+
print(f"Lexicon: {model_files.get('lexicon', 'Not required for MMS')}\n")
|
251 |
+
|
252 |
+
# Check if this is an MMS model
|
253 |
+
is_mms = 'mms' in os.path.basename(model_dir).lower()
|
254 |
+
|
255 |
+
# Create configuration based on model type
|
256 |
+
if is_mms:
|
257 |
+
if 'tokens' not in model_files or not os.path.exists(model_files['tokens']):
|
258 |
+
raise ValueError("tokens.txt is required for MMS models")
|
259 |
+
|
260 |
+
# MMS models use tokens.txt and no lexicon
|
261 |
+
vits_config = sherpa_onnx.OfflineTtsVitsModelConfig(
|
262 |
+
model_files['model'], # model
|
263 |
+
'', # lexicon
|
264 |
+
model_files['tokens'], # tokens
|
265 |
+
'', # data_dir
|
266 |
+
'', # dict_dir
|
267 |
+
0.667, # noise_scale
|
268 |
+
0.8, # noise_scale_w
|
269 |
+
1.0 # length_scale
|
270 |
+
)
|
271 |
+
else:
|
272 |
+
# Non-MMS models use lexicon.txt
|
273 |
+
if 'tokens' not in model_files or not os.path.exists(model_files['tokens']):
|
274 |
+
raise ValueError("tokens.txt is required for VITS models")
|
275 |
+
|
276 |
+
# Set data dir if it exists
|
277 |
+
espeak_data = os.path.join(os.path.dirname(model_files['model']), 'espeak-ng-data')
|
278 |
+
data_dir = espeak_data if os.path.exists(espeak_data) else 'espeak-ng-data'
|
279 |
+
|
280 |
+
# Get lexicon path if it exists
|
281 |
+
lexicon = model_files.get('lexicon', '') if os.path.exists(model_files.get('lexicon', '')) else ''
|
282 |
+
|
283 |
+
# Create VITS model config
|
284 |
+
vits_config = sherpa_onnx.OfflineTtsVitsModelConfig(
|
285 |
+
model_files['model'], # model
|
286 |
+
lexicon, # lexicon
|
287 |
+
model_files['tokens'], # tokens
|
288 |
+
data_dir, # data_dir
|
289 |
+
'', # dict_dir
|
290 |
+
0.667, # noise_scale
|
291 |
+
0.8, # noise_scale_w
|
292 |
+
1.0 # length_scale
|
293 |
+
)
|
294 |
+
|
295 |
+
# Create the model config with VITS
|
296 |
+
model_config = sherpa_onnx.OfflineTtsModelConfig()
|
297 |
+
model_config.vits = vits_config
|
298 |
+
|
299 |
+
# Create TTS configuration
|
300 |
+
config = sherpa_onnx.OfflineTtsConfig(
|
301 |
+
model=model_config,
|
302 |
+
max_num_sentences=2
|
303 |
+
)
|
304 |
+
|
305 |
+
# Initialize TTS engine
|
306 |
+
tts = sherpa_onnx.OfflineTts(config)
|
307 |
+
|
308 |
+
# Generate audio
|
309 |
+
audio_data = tts.generate(text)
|
310 |
+
|
311 |
+
# Ensure we have valid audio data
|
312 |
+
if audio_data is None or len(audio_data.samples) == 0:
|
313 |
+
raise ValueError("Failed to generate audio - no data generated")
|
314 |
+
|
315 |
+
# Convert samples list to numpy array and normalize
|
316 |
+
audio_array = np.array(audio_data.samples, dtype=np.float32)
|
317 |
+
if np.any(audio_array): # Check if array is not all zeros
|
318 |
+
audio_array = audio_array / np.abs(audio_array).max()
|
319 |
+
else:
|
320 |
+
raise ValueError("Generated audio is empty")
|
321 |
+
|
322 |
+
# Return in Gradio's expected format (numpy array, sample rate)
|
323 |
+
return (audio_array, audio_data.sample_rate)
|
324 |
+
|
325 |
+
except Exception as e:
|
326 |
+
error_msg = str(e)
|
327 |
+
# Check for OOV or token conversion errors
|
328 |
+
if "out of vocabulary" in error_msg.lower() or "token" in error_msg.lower():
|
329 |
+
error_msg = f"Text contains unsupported characters: {error_msg}"
|
330 |
+
print(f"Error generating audio: {error_msg}")
|
331 |
+
print(f"Error in TTS generation: {error_msg}")
|
332 |
+
raise
|
333 |
+
|
334 |
+
def tts_interface(selected_model, text, status_output):
|
335 |
+
try:
|
336 |
+
if not text.strip():
|
337 |
+
return None, "Please enter some text"
|
338 |
+
|
339 |
+
|
340 |
+
model_id = selected_model
|
341 |
+
# Store original text for status message
|
342 |
+
original_text = text
|
343 |
+
|
344 |
+
|
345 |
+
try:
|
346 |
+
# Update status with language info
|
347 |
+
voice_name = model_id
|
348 |
+
status = f"Generating speech using {voice_name} ..."
|
349 |
+
|
350 |
+
# Generate audio
|
351 |
+
audio_data, sample_rate = generate_audio(text, model_id)
|
352 |
+
|
353 |
+
# Include translation info in final status if text was actually translated
|
354 |
+
final_status = f"Generated speech using {voice_name}"
|
355 |
+
final_status += f"\nText: '{text}'"
|
356 |
+
|
357 |
+
return (sample_rate, audio_data), final_status
|
358 |
+
except ValueError as e:
|
359 |
+
# Handle known errors with user-friendly messages
|
360 |
+
error_msg = str(e)
|
361 |
+
if "cannot process some words" in error_msg.lower():
|
362 |
+
return None, error_msg
|
363 |
+
return None, f"Error: {error_msg}"
|
364 |
+
|
365 |
+
except Exception as e:
|
366 |
+
print(f"Error in TTS generation: {str(e)}")
|
367 |
+
error_msg = str(e)
|
368 |
+
return None, f"Error: {error_msg}"
|
369 |
+
|
vits-piper-fa-ganji.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:71e35c08741b63b570a40c08d411c49c6fea754e263e86ce8343fb9f19119a03
|
3 |
+
size 63516173
|