Initial chatbot
Browse files
app.py
ADDED
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
|
3 |
+
from transformers import (
|
4 |
+
AutoTokenizer,
|
5 |
+
AutoModelForSeq2SeqLM,
|
6 |
+
AutoModelForCausalLM,
|
7 |
+
BitsAndBytesConfig,
|
8 |
+
pipeline
|
9 |
+
)
|
10 |
+
|
11 |
+
import torch
|
12 |
+
|
13 |
+
# CHAT MODEL
|
14 |
+
|
15 |
+
chat_modelcard = 'meta-llama/Llama-3.2-3B-Instruct'
|
16 |
+
|
17 |
+
tokenizer = AutoTokenizer.from_pretrained(chat_modelcard)
|
18 |
+
model = AutoModelForCausalLM.from_pretrained(chat_modelcard, quantization_config=BitsAndBytesConfig(load_in_4bit=True, bnb_4bit_compute_dtype=torch.bfloat16), device_map='cpu')
|
19 |
+
|
20 |
+
chat_pipeline = pipeline('text-generation', model=model, tokenizer=tokenizer, do_sample=True, temperature=0.5, truncation=True, max_length=512, return_full_text=False)
|
21 |
+
|
22 |
+
# TRANSLATION MODELS
|
23 |
+
|
24 |
+
fw_modelcard = "amurienne/gallek-m2m100"
|
25 |
+
bw_modelcard = "amurienne/kellag-m2m100"
|
26 |
+
|
27 |
+
fw_model = AutoModelForSeq2SeqLM.from_pretrained(fw_modelcard)
|
28 |
+
fw_tokenizer = AutoTokenizer.from_pretrained(fw_modelcard)
|
29 |
+
|
30 |
+
fw_translation_pipeline = pipeline("translation", model=fw_model, tokenizer=fw_tokenizer, src_lang='fr', tgt_lang='br', max_length=400, device="cpu")
|
31 |
+
|
32 |
+
bw_model = AutoModelForSeq2SeqLM.from_pretrained(bw_modelcard)
|
33 |
+
bw_tokenizer = AutoTokenizer.from_pretrained(bw_modelcard)
|
34 |
+
|
35 |
+
bw_translation_pipeline = pipeline("translation", model=bw_model, tokenizer=bw_tokenizer, src_lang='br', tgt_lang='fr', max_length=400, device="cpu")
|
36 |
+
|
37 |
+
# translation function
|
38 |
+
def translate(text, forward: bool):
|
39 |
+
if forward:
|
40 |
+
return fw_translation_pipeline("traduis de français en breton: " + text)[0]['translation_text']
|
41 |
+
else:
|
42 |
+
return bw_translation_pipeline("treiñ eus ar galleg d'ar brezhoneg: " + text)[0]['translation_text']
|
43 |
+
|
44 |
+
# answer function
|
45 |
+
def answer(text):
|
46 |
+
return chat_pipeline(text, chat_template=None)[0]['generated_text']
|
47 |
+
|
48 |
+
def format_prompt_with_history(message, native_chat_history):
|
49 |
+
# format the conversation history
|
50 |
+
prompt = ""
|
51 |
+
for interaction in native_chat_history:
|
52 |
+
prompt += f"<|start_header_id|>{interaction['role']}<|end_header_id|>\n{interaction['content']}<|eot_id|>\n"
|
53 |
+
|
54 |
+
# add the current user message
|
55 |
+
prompt += f"<|start_header_id|>user<|end_header_id|>\ntu es un assistant francophone. Répond en une seule phrase sans formattage.<|eot_id|>\n<|start_header_id|>assistant<|end_header_id|>\n"
|
56 |
+
|
57 |
+
return prompt
|
58 |
+
|
59 |
+
# maximum number of interactions to keep in history
|
60 |
+
max_history_length = 3
|
61 |
+
|
62 |
+
# keep a hidden model "native" language chat history
|
63 |
+
native_chat_history = []
|
64 |
+
|
65 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
66 |
+
chatbot = gr.Chatbot(label="Breton Chatbot (Translation based)", type="messages")
|
67 |
+
msg = gr.Textbox(label='User Input')
|
68 |
+
|
69 |
+
def clear(chat_history):
|
70 |
+
"""
|
71 |
+
Handles clearing chat
|
72 |
+
"""
|
73 |
+
chat_history.clear()
|
74 |
+
native_chat_history.clear()
|
75 |
+
|
76 |
+
chatbot.clear(clear, inputs=[chatbot])
|
77 |
+
|
78 |
+
def respond(message, chat_history):
|
79 |
+
"""
|
80 |
+
Handles bot response generation
|
81 |
+
"""
|
82 |
+
|
83 |
+
global native_chat_history
|
84 |
+
|
85 |
+
fr_message = translate(message, forward=False)
|
86 |
+
print(f"user fr -> {fr_message}")
|
87 |
+
|
88 |
+
prompt = format_prompt_with_history(fr_message, native_chat_history)
|
89 |
+
|
90 |
+
bot_fr_message = answer(prompt)
|
91 |
+
print(f"bot fr -> {bot_fr_message}")
|
92 |
+
bot_br_message = translate( bot_fr_message, forward=True)
|
93 |
+
print(f"bot br -> {bot_br_message}")
|
94 |
+
|
95 |
+
chat_history.append({"role": "user", "content": message})
|
96 |
+
chat_history.append({"role": "assistant", "content": bot_br_message})
|
97 |
+
|
98 |
+
native_chat_history.append({"role": "user", "content": fr_message})
|
99 |
+
native_chat_history.append({"role": "assistant", "content": bot_fr_message})
|
100 |
+
|
101 |
+
# limit the history length
|
102 |
+
if len(chat_history) > max_history_length * 2:
|
103 |
+
chat_history = chat_history[-max_history_length * 2:]
|
104 |
+
native_chat_history = native_chat_history[-max_history_length * 2:]
|
105 |
+
|
106 |
+
return "", chat_history
|
107 |
+
|
108 |
+
msg.submit(respond, [msg, chatbot], [msg, chatbot])
|
109 |
+
|
110 |
+
if __name__ == "__main__":
|
111 |
+
demo.launch()
|