Spaces:
Runtime error
Runtime error
File size: 15,132 Bytes
0f14897 4f254e5 0f14897 97e6893 0f14897 97e6893 0f14897 97e6893 0f14897 a54b7f1 0f14897 4f254e5 0f14897 5e42615 0f14897 16c895c 0f14897 5e42615 16c895c 5e42615 16c895c 5e42615 16c895c 5a65d09 16c895c 0f14897 4f254e5 0f14897 4f254e5 0f14897 5e42615 97e6893 0f14897 97e6893 0f14897 97e6893 0f14897 97e6893 0f14897 5e42615 0f14897 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 |
import re
from copy import deepcopy
import argparse
import torch
import torch.nn.functional as F
from transformers import (AutoModelForSeq2SeqLM, AutoTokenizer,
BartForConditionalGeneration, BartTokenizer,)
from src.bart_with_group_beam import BartForConditionalGeneration_GroupBeam
from src.utils import (construct_template, filter_words,
formalize_tA, post_process_template)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
ORION_HYPO_GENERATOR = 'chenxran/orion-hypothesis-generator'
ORION_INS_GENERATOR = 'chenxran/orion-instance-generator'
RELATIONS = [
"Causes",
"HasProperty",
"MadeUpOf",
"isAfter",
"isBefore",
"xReact",
"xWant",
"xReason",
"xAttr",
"Desires",
]
class BartInductor(object):
def __init__(
self,
group_beam=True,
continue_pretrain_instance_generator=True,
continue_pretrain_hypo_generator=True,
if_then=False
):
self.if_then = if_then
self.orion_instance_generator_path = 'facebook/bart-large' if not continue_pretrain_instance_generator else ORION_INS_GENERATOR
self.orion_hypothesis_generator_path = 'facebook/bart-large' if not continue_pretrain_hypo_generator else ORION_HYPO_GENERATOR
if group_beam:
self.orion_hypothesis_generator = BartForConditionalGeneration_GroupBeam.from_pretrained(self.orion_hypothesis_generator_path).to(device).eval()
else:
self.orion_hypothesis_generator = BartForConditionalGeneration.from_pretrained(self.orion_hypothesis_generator_path).to(device).eval()
self.orion_instance_generator = BartForConditionalGeneration.from_pretrained(self.orion_instance_generator_path).to(device).eval()
self.tokenizer = BartTokenizer.from_pretrained("facebook/bart-large", use_fast=True)
self.word_length = 2
self.stop_sub_list = ['he', 'she', 'this', 'that', 'and', 'it', 'which', 'who', 'whose', 'there', 'they', '.', 'its', 'one',
'i', ',', 'the', 'nobody', 'his', 'her', 'also', 'only', 'currently', 'here', '()', 'what', 'where',
'why', 'a', 'some', '"', ')', '(', 'now', 'everyone', 'everybody', 'their', 'often', 'usually', 'you',
'-', '?', ';', 'in', 'on', 'each', 'both', 'him', 'typically', 'mostly', 'sometimes', 'normally',
'always', 'usually', 'still', 'today', 'was', 'were', 'but', 'although', 'current', 'all', 'have',
'has', 'later', 'with', 'most', 'nowadays', 'then', 'every', 'when', 'someone', 'anyone', 'somebody',
'anybody', 'any', 'being', 'get', 'getting', 'thus', 'under', 'even', 'for', 'can', 'rarely', 'never',
'may', 'generally', 'other', 'another', 'too', 'first', 'second', 'third', 'mainly', 'primarily',
'having', 'have', 'has']
self.stop_size = len(self.stop_sub_list)
for i in range(self.stop_size):
if self.stop_sub_list[i][0].isalpha():
temp = self.stop_sub_list[i][0].upper() + self.stop_sub_list[i][1:]
self.stop_sub_list.append(temp)
self.bad_words_ids = [self.tokenizer.encode(bad_word)[1:-1] for bad_word in ['also', ' also']]
stop_index = self.tokenizer(self.stop_sub_list, max_length=4, padding=True)
stop_index = torch.tensor(stop_index['input_ids'])[:, 1]
stop_weight = torch.zeros(1, self.tokenizer.vocab_size).to(device)
stop_weight[0, stop_index] -= 100
self.stop_weight = stop_weight[0, :]
def clean(self, text):
segments = re.split(r'<ent\d>', text)
last_segment = segments[-1]
if last_segment.startswith('.'):
return text[:text.rfind(last_segment)]+'.'
else:
return text
def generate(self, inputs, k=10, topk=10, return_scores=False):
with torch.no_grad():
tB_probs = self.generate_rule(inputs, k)
new_ret = []
if return_scores:
ret = [(t[0], t[1]) for t in tB_probs]
for temp in ret:
temp = (self.clean(temp[0].strip()), temp[1])
if len(new_ret) < topk and temp not in new_ret:
new_ret.append(temp)
else:
ret = [t[0] for t in tB_probs]
for temp in ret:
temp = self.clean(temp.strip())
if len(new_ret) < topk and temp not in new_ret:
new_ret.append(temp)
return new_ret
def explore_mask(self, tA, k, tokens, prob, required_token, probs):
if required_token == 0:
return [[tokens, prob, probs]]
if required_token <= self.word_length:
k = min(k, 2)
ret = []
generated_ids = self.tokenizer(tA, max_length=128, padding='longest', return_tensors='pt') # ["input_ids"].to(device)
for key in generated_ids.keys():
generated_ids[key] = generated_ids[key].to(device)
mask_index = torch.where(generated_ids["input_ids"][0] == self.tokenizer.mask_token_id)
generated_ret = self.orion_instance_generator(**generated_ids)
#logits = generated_ret.logits
logits = generated_ret[0]
softmax = F.softmax(logits, dim=-1)
mask_word = softmax[0, mask_index[0][0], :] + self.stop_weight
top_k = torch.topk(mask_word, k, dim=0)
for i in range(top_k[1].size(0)):
token_s = top_k[1][i]
prob_s = top_k[0][i].item()
token_this = self.tokenizer.decode([token_s]).strip()
if token_this[0].isalpha() == False or len(token_this) <= 2:
continue
index_s = tA.index(self.tokenizer.mask_token)
tAs = tA[:index_s] + token_this + tA[index_s + len(self.tokenizer.mask_token):]
tokens_this = [t for t in tokens]
tokens_this.append(token_this)
probs_new = deepcopy(probs)
probs_new.append(prob_s)
ret.extend(self.explore_mask(tAs, 1, tokens_this, prob_s * prob, required_token - 1,probs_new))
return ret
def extract_words_for_tA_bart(self, tA, k=6, print_it = False):
spans = [t.lower().strip() for t in re.split(r'<.*?>', tA[:-1])]
generated_ids = self.tokenizer([tA], padding='longest', return_tensors='pt')['input_ids'].to(device).to(torch.int64)
generated_ret = self.orion_instance_generator.generate(generated_ids, num_beams=max(120, k),
#num_beam_groups=max(120, k),
max_length=generated_ids.size(1) + 15,
num_return_sequences=max(120, k), #min_length=generated_ids.size(1),
#diversity_penalty=2.0,
#length_penalty= 0.8,
#early_stopping=True, bad_words_ids=bad_words_ids, no_repeat_ngram_size=2,
output_scores=True,
return_dict_in_generate=True)
summary_ids = generated_ret['sequences']
probs = F.softmax(generated_ret['sequences_scores'].to(torch.float32))
txts = [self.tokenizer.decode(g, skip_special_tokens=True, clean_up_tokenization_spaces=True) for g in summary_ids]
ret = []
for i, txt in enumerate(txts):
if tA.endswith('.'):
if txt.endswith('.'):
txt = txt[:-1].strip()
txt += '.'
word_imcomplete = False
prob = probs[i].item()
words_i = []
start_index = 0
for j in range(len(spans)-1):
span1 = spans[j]
span2 = spans[j+1]
if (span1 in txt.lower()[start_index:]) and (span2 in txt.lower()[start_index:]):
index1 = txt.lower().index(span1,start_index)+len(span1)
if span2 == '':
if txt[-1] == '.':
index2 = len(txt) -1
else:
index2 = len(txt)
else:
index2 = txt.lower().index(span2, start_index)
words_i.append(txt[index1:index2].strip())
start_index = index2
#if words_i[-1] == '':
# word_imcomplete = True
else:
word_imcomplete = True
if word_imcomplete:
# if print_it:
# print(txt + '\t' + tA + '\t' + '×')
continue
ret.append([words_i, prob])
return sorted(ret, key=lambda x: x[1], reverse=True)[:k]
def extract_words_for_tA(self, tA, k=6):
word_mask_str = ' '.join([self.tokenizer.mask_token] * self.word_length)
tA = tA.replace('<mask>', word_mask_str)
mask_count = tA.count(self.tokenizer.mask_token)
mask_probs = self.explore_mask(tA, k*20, [], 1.0, mask_count, [])
ret = []
visited_mask_txt = {}
for mask, prob, probs in mask_probs:
mask_txt = ' '.join(mask).lower()
if mask_txt in visited_mask_txt:
continue
visited_mask_txt[mask_txt] = 1
words = []
probs_words = []
for i in range(0,mask_count, self.word_length):
words.append(' '.join(mask[i: i + self.word_length]))
prob_word = 1.0
for j in range(i, i + self.word_length):
prob_word *= probs[j]
probs_words.append(prob_word)
ret.append([words, prob, probs_words])
return sorted(ret, key=lambda x: x[1], reverse=True)[:k]
def extract_templateBs_batch(self, words_prob, tA, k, print_it = False):
words_prob_sorted = []
for (words, probA, *_) in words_prob:
tokenized_word = self.tokenizer(words[0])
words_prob_sorted.append([words,probA,len(tokenized_word['input_ids'])])
words_prob_sorted.sort(key=lambda x:x[2])
batch_size = 8
templates = []
index_words = {}
ret = {}
num_beams = k
for enum, (words, probA, *_) in enumerate(words_prob_sorted):
template = construct_template(words, tA, self.if_then)
templates.extend(template)
for t in template:
index_words[len(index_words)] = '\t'.join(words)
# index_words[len(templates)-1] = '\t'.join(words)
if (len(templates) == batch_size) or enum==len(words_prob_sorted)-1 or (words_prob_sorted[enum+1][2]!=words_prob_sorted[enum][2]):
generated_ids = self.tokenizer(templates, padding="longest", return_tensors='pt')['input_ids'].to(device).to(torch.int64)
generated_ret = self.orion_hypothesis_generator.generate(generated_ids, num_beams=num_beams,
num_beam_groups=num_beams,
max_length=28, #template_length+5,
num_return_sequences=num_beams, min_length=3,
diversity_penalty=1.0,
early_stopping=True,
#length_penalty = 0.1,
bad_words_ids=self.bad_words_ids,
#no_repeat_ngram_size=2,
output_scores=True,
return_dict_in_generate=True, decoder_ori_input_ids = generated_ids,
top_p=0.95,
)
summary_ids = generated_ret['sequences'].reshape((len(templates),num_beams,-1))
probs = F.softmax(generated_ret['sequences_scores'].reshape((len(templates),num_beams)),dim=1).to(torch.float32)
for ii in range(summary_ids.size(0)):
txts = [self.tokenizer.decode(g, skip_special_tokens=True, clean_up_tokenization_spaces=True) for g in
summary_ids[ii]]
ii_template = []
words_ii = index_words[ii].split('\t')
for i, txt in enumerate(txts):
prob = probs[ii][i].item() * probA
txt = txt.lower()
txt = post_process_template(txt)
words_ii_matched = [word.lower() for word in words_ii] #extract_similar_words(txt, words_ii)
if words_ii_matched is None:
prob = 0.0
else:
for j, word in enumerate(words_ii_matched):
if word not in txt:
prob = 0.0
else:
txt = txt.replace(word, '<ent{}>'.format(j), 1)
if txt.count(' ')+1<=3:
continue
ii_template.append([txt, prob])
# if print_it:
# print(index_words[ii]+'\t'+str(convert_for_print(ii_template)))
for template, prob in ii_template:
if template not in ret:
ret[template] = 0.0
ret[template] += prob
templates.clear()
index_words.clear()
return ret
def generate_rule(self, tA, k=10, print_it = False):
tA=formalize_tA(tA)
if 'bart' in str(self.orion_instance_generator.__class__).lower():
words_prob = self.extract_words_for_tA_bart(tA, k,print_it=print_it)
words_prob = filter_words(words_prob)[:k]
# if print_it:
# print(convert_for_print(words_prob))
else:
words_prob = self.extract_words_for_tA(tA, k)
words_prob = filter_words(words_prob)[:k]
tB_prob = self.extract_templateBs_batch(words_prob, tA, k,print_it=print_it)
ret = []
for k1 in tB_prob:
ret.append([k1, tB_prob[k1]])
ret = sorted(ret, key=lambda x: x[1], reverse=True)[:k]
if self.if_then:
for i, temp in enumerate(ret):
sentence = temp[0]
if "then" in sentence:
sentence = sentence.split("then")[-1]
else:
sentence = sentence.replace("if", "")
ret[i][0] = sentence
return ret
|