Spaces:
Runtime error
Runtime error
Commit
·
fd03f1c
1
Parent(s):
f3b82e9
first commit
Browse files- .env.example +3 -0
- .gitignore +7 -0
- Dockerfile +29 -0
- OAI_CONFIG_LIST +6 -0
- README.md +46 -5
- app.py +364 -0
- articles.txt +1 -0
- chainlit.md +3 -0
- newsAPI.py +59 -0
- redditAPI.py +59 -0
- requirements.txt +5 -0
.env.example
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
OPENAI_API_KEY=
|
| 2 |
+
NEWSAPI_API_KEY=
|
| 3 |
+
REDDIT_ACCESS_TOKEN=
|
.gitignore
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
.env
|
| 2 |
+
.cache
|
| 3 |
+
__pycache__
|
| 4 |
+
poetry.lock
|
| 5 |
+
*.yaml
|
| 6 |
+
*.toml
|
| 7 |
+
*.lock
|
Dockerfile
ADDED
|
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
FROM python:3.11
|
| 2 |
+
|
| 3 |
+
# Create a non-root user with home directory
|
| 4 |
+
RUN useradd -m -u 1000 user
|
| 5 |
+
|
| 6 |
+
# Set user and environment variables
|
| 7 |
+
USER user
|
| 8 |
+
ENV HOME=/home/user \
|
| 9 |
+
PATH=/home/user/.local/bin:$PATH
|
| 10 |
+
|
| 11 |
+
# Set the working directory in the container
|
| 12 |
+
WORKDIR $HOME/app
|
| 13 |
+
|
| 14 |
+
# Copy the requirements.txt file to the container
|
| 15 |
+
COPY requirements.txt $HOME/app/
|
| 16 |
+
|
| 17 |
+
# Install Python dependencies from requirements.txt
|
| 18 |
+
RUN pip install --user -r $HOME/app/requirements.txt
|
| 19 |
+
|
| 20 |
+
# Copy the application files, including app.py
|
| 21 |
+
COPY --chown=user:user . $HOME/app/
|
| 22 |
+
|
| 23 |
+
# Ensure user has write permission to the app directory
|
| 24 |
+
USER root
|
| 25 |
+
RUN chown -R user:user $HOME/app
|
| 26 |
+
USER user
|
| 27 |
+
|
| 28 |
+
# Specify the command to run your application
|
| 29 |
+
CMD ["chainlit", "run", "app.py", "--port", "7860"]
|
OAI_CONFIG_LIST
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[
|
| 2 |
+
{
|
| 3 |
+
"model": "gpt-4-1106-preview",
|
| 4 |
+
"api_key": "OPENAI_API_KEY"
|
| 5 |
+
}
|
| 6 |
+
]
|
README.md
CHANGED
|
@@ -1,11 +1,52 @@
|
|
| 1 |
---
|
| 2 |
-
title:
|
| 3 |
-
emoji:
|
| 4 |
-
colorFrom:
|
| 5 |
-
colorTo:
|
| 6 |
sdk: docker
|
| 7 |
pinned: false
|
| 8 |
license: apache-2.0
|
| 9 |
---
|
| 10 |
|
| 11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
+
title: Soap Opera
|
| 3 |
+
emoji: 🔥
|
| 4 |
+
colorFrom: indigo
|
| 5 |
+
colorTo: green
|
| 6 |
sdk: docker
|
| 7 |
pinned: false
|
| 8 |
license: apache-2.0
|
| 9 |
---
|
| 10 |
|
| 11 |
+
# Installation and Setup
|
| 12 |
+
You will need Python, Conda, Docker (Optional for code-execution), Git, and a text editor installed.
|
| 13 |
+
|
| 14 |
+
First install python=3.11 and other 3rd party dependencies. If you have conda installed, you can run the following commands:
|
| 15 |
+
|
| 16 |
+
```shell
|
| 17 |
+
conda create --name demo python=3.11 -y
|
| 18 |
+
conda activate demo
|
| 19 |
+
|
| 20 |
+
pip install -r requirements.txt
|
| 21 |
+
```
|
| 22 |
+
|
| 23 |
+
If you do not have conda installed but have virtualenv installed, you can run the following commands:
|
| 24 |
+
```shell
|
| 25 |
+
pip install virtualenv
|
| 26 |
+
virtualenv demo -p python3.
|
| 27 |
+
|
| 28 |
+
# on windows
|
| 29 |
+
demo\Scripts\activate
|
| 30 |
+
# on mac/linux
|
| 31 |
+
source demo/bin/activate
|
| 32 |
+
|
| 33 |
+
pip install -r requirements.txt
|
| 34 |
+
```
|
| 35 |
+
|
| 36 |
+
# Configure the environment variables
|
| 37 |
+
|
| 38 |
+
# Usage
|
| 39 |
+
Run the following command to start the chat interface.
|
| 40 |
+
|
| 41 |
+
```shell
|
| 42 |
+
chainlit run app.py
|
| 43 |
+
```
|
| 44 |
+
|
| 45 |
+
# File Structure
|
| 46 |
+
|
| 47 |
+
This is an example of using the chainlit chat interface with multi-agent conversation between agents to complete a tasks.
|
| 48 |
+
|
| 49 |
+
The tool was developed to grab SAP data online and then process it to easily digestible human language.
|
| 50 |
+
|
| 51 |
+
`app.py` - Starts the chat interface.
|
| 52 |
+
|
app.py
ADDED
|
@@ -0,0 +1,364 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
This is the source code for the webscraper agents that use ChainLit
|
| 3 |
+
Features:
|
| 4 |
+
- Uses top N google search based on a keyword, create a JSON file, uploads it to Google Cloud Object Storage or Locally
|
| 5 |
+
- Capable of asking Reddit for questions
|
| 6 |
+
- Continuous messaging
|
| 7 |
+
- Multithreading
|
| 8 |
+
Written by: Antoine Ross - October 2023.
|
| 9 |
+
"""
|
| 10 |
+
|
| 11 |
+
import os
|
| 12 |
+
from typing import Dict, Optional, Union
|
| 13 |
+
from dotenv import load_dotenv, find_dotenv
|
| 14 |
+
|
| 15 |
+
import chainlit as cl
|
| 16 |
+
from chainlit.client.base import ConversationDict
|
| 17 |
+
from chainlit.types import AskFileResponse
|
| 18 |
+
from langchain.document_loaders import PyPDFLoader, TextLoader
|
| 19 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 20 |
+
from langchain.chains import ConversationalRetrievalChain
|
| 21 |
+
|
| 22 |
+
import autogen
|
| 23 |
+
from autogen import Agent, AssistantAgent, UserProxyAgent, config_list_from_json
|
| 24 |
+
from redditAPI import grab_articles
|
| 25 |
+
|
| 26 |
+
load_dotenv(find_dotenv())
|
| 27 |
+
|
| 28 |
+
CONTEXT = """- Task: ArticleGPT specializes in creating SEO-optimized articles specifically tailored for [Medium.com](http://medium.com/). The target audience are people who are looking to get started with learning AI & Machine Learning and LLM’s for their use-case.
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
Output Specifications:
|
| 32 |
+
|
| 33 |
+
• Output Style and Format: Craft articles that fit [Medium.com](http://medium.com/)'s style, being straightforward and concise. Ensure grammatical accuracy, coherence, and stylistic refinement. Use hooks and effective whitespace management to maintain reader's attention. Humor and Sarcasm: Including a directive for humor and sarcasm to utilize rhetorical devices, which could make the text feel more human-like.
|
| 34 |
+
|
| 35 |
+
• Tone: The tone is conversational and likable, similar to Morgan Freeman's speech style.
|
| 36 |
+
|
| 37 |
+
• Titles and Subheadings: Create titles and subheadings that are Impactful, concise and effectively capturing the content's essence.
|
| 38 |
+
|
| 39 |
+
• Titles: 5-9 words, with numbers for higher click-through rates. Prefer negative or neutral tones.
|
| 40 |
+
|
| 41 |
+
• Headlines: Structure in two parts, main and sub-headline.
|
| 42 |
+
|
| 43 |
+
• Subheadings: Spark curiosity with questions, action words, and numbers; emphasize benefits.
|
| 44 |
+
|
| 45 |
+
• Content balancing simplicity, engagement, and SEO optimization for Medium.
|
| 46 |
+
|
| 47 |
+
•
|
| 48 |
+
|
| 49 |
+
Sample output:
|
| 50 |
+
|
| 51 |
+
Title
|
| 52 |
+
|
| 53 |
+
Subheading 1
|
| 54 |
+
|
| 55 |
+
paragraph 1: Explain concisely the core of the article. How it can be useful for their use-case. (2-3 sentences)
|
| 56 |
+
|
| 57 |
+
Subheading 2
|
| 58 |
+
|
| 59 |
+
paragraph 2: Tell the readers how doing/having three things can dramatically improve results. (1-2 sentences)
|
| 60 |
+
|
| 61 |
+
[3 bullet points or 3 numbered list to support paragraph 2]
|
| 62 |
+
|
| 63 |
+
paragraph 3: summarize the bullet points and how it can be useful for the reader. (1-2 sentences)
|
| 64 |
+
|
| 65 |
+
Subheading 3
|
| 66 |
+
|
| 67 |
+
paragraph 4: Concluding Anecdote or Opinion: Requesting a final 'personal' touch is intended to leave the reader with a sense of individual perspective, something that machine-generated text often lacks. (2-3 sentences)
|
| 68 |
+
"""
|
| 69 |
+
|
| 70 |
+
# Agents
|
| 71 |
+
USER_PROXY_NAME = "User Proxy"
|
| 72 |
+
PROOF_READER = "Proofreader"
|
| 73 |
+
WRITER = "Writer"
|
| 74 |
+
EMOTIONAL_STRATEGIST = "Emotional Impact Strategist"
|
| 75 |
+
NARRATIVE_DESIGNER = "Narrative Designer"
|
| 76 |
+
STYLIST = "Style Specialist"
|
| 77 |
+
ARTICLES = None
|
| 78 |
+
|
| 79 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=8192, chunk_overlap=100)
|
| 80 |
+
|
| 81 |
+
def load_articles(file_path):
|
| 82 |
+
try:
|
| 83 |
+
with open(file_path, 'r') as file:
|
| 84 |
+
article = file.read()
|
| 85 |
+
return article
|
| 86 |
+
except FileNotFoundError:
|
| 87 |
+
print("File not found")
|
| 88 |
+
return None
|
| 89 |
+
|
| 90 |
+
# Function to process the file
|
| 91 |
+
def process_file(file: AskFileResponse):
|
| 92 |
+
import tempfile
|
| 93 |
+
|
| 94 |
+
if file.type == "text/plain":
|
| 95 |
+
Loader = TextLoader
|
| 96 |
+
elif file.type == "application/pdf":
|
| 97 |
+
Loader = PyPDFLoader
|
| 98 |
+
|
| 99 |
+
with tempfile.NamedTemporaryFile(mode="wb", delete=False) as tempfile:
|
| 100 |
+
if file.type == "text/plain":
|
| 101 |
+
tempfile.write(file.content)
|
| 102 |
+
elif file.type == "application/pdf":
|
| 103 |
+
with open(tempfile.name, "wb") as f:
|
| 104 |
+
f.write(file.content)
|
| 105 |
+
|
| 106 |
+
loader = Loader(tempfile.name)
|
| 107 |
+
documents = loader.load()
|
| 108 |
+
docs = text_splitter.split_documents(documents)
|
| 109 |
+
for i, doc in enumerate(docs):
|
| 110 |
+
doc.metadata["source"] = f"source_{i}"
|
| 111 |
+
cl.user_session.set("docs", docs)
|
| 112 |
+
return docs
|
| 113 |
+
|
| 114 |
+
async def ask_helper(func, **kwargs):
|
| 115 |
+
res = await func(**kwargs).send()
|
| 116 |
+
while not res:
|
| 117 |
+
res = await func(**kwargs).send()
|
| 118 |
+
return res
|
| 119 |
+
|
| 120 |
+
class ChainlitAssistantAgent(AssistantAgent):
|
| 121 |
+
"""
|
| 122 |
+
Wrapper for AutoGens Assistant Agent
|
| 123 |
+
"""
|
| 124 |
+
def send(
|
| 125 |
+
self,
|
| 126 |
+
message: Union[Dict, str],
|
| 127 |
+
recipient: Agent,
|
| 128 |
+
request_reply: Optional[bool] = None,
|
| 129 |
+
silent: Optional[bool] = False,
|
| 130 |
+
) -> bool:
|
| 131 |
+
cl.run_sync(
|
| 132 |
+
cl.Message(
|
| 133 |
+
content=f'*Sending message to "{recipient.name}":*\n\n{message}',
|
| 134 |
+
author=self.name,
|
| 135 |
+
).send()
|
| 136 |
+
)
|
| 137 |
+
super(ChainlitAssistantAgent, self).send(
|
| 138 |
+
message=message,
|
| 139 |
+
recipient=recipient,
|
| 140 |
+
request_reply=request_reply,
|
| 141 |
+
silent=silent,
|
| 142 |
+
)
|
| 143 |
+
class ChainlitUserProxyAgent(UserProxyAgent):
|
| 144 |
+
"""
|
| 145 |
+
Wrapper for AutoGens UserProxy Agent. Simplifies the UI by adding CL Actions.
|
| 146 |
+
"""
|
| 147 |
+
def get_human_input(self, prompt: str) -> str:
|
| 148 |
+
if prompt.startswith(
|
| 149 |
+
"Provide feedback to chat_manager. Press enter to skip and use auto-reply"
|
| 150 |
+
):
|
| 151 |
+
res = cl.run_sync(
|
| 152 |
+
ask_helper(
|
| 153 |
+
cl.AskActionMessage,
|
| 154 |
+
content="Continue or provide feedback?",
|
| 155 |
+
actions=[
|
| 156 |
+
cl.Action( name="continue", value="continue", label="✅ Continue" ),
|
| 157 |
+
cl.Action( name="feedback",value="feedback", label="💬 Provide feedback"),
|
| 158 |
+
cl.Action( name="exit",value="exit", label="🔚 Exit Conversation" )
|
| 159 |
+
],
|
| 160 |
+
)
|
| 161 |
+
)
|
| 162 |
+
if res.get("value") == "continue":
|
| 163 |
+
return ""
|
| 164 |
+
if res.get("value") == "exit":
|
| 165 |
+
return "exit"
|
| 166 |
+
|
| 167 |
+
reply = cl.run_sync(ask_helper(cl.AskUserMessage, content=prompt, timeout=60))
|
| 168 |
+
|
| 169 |
+
return reply["content"].strip()
|
| 170 |
+
|
| 171 |
+
def send(
|
| 172 |
+
self,
|
| 173 |
+
message: Union[Dict, str],
|
| 174 |
+
recipient: Agent,
|
| 175 |
+
request_reply: Optional[bool] = None,
|
| 176 |
+
silent: Optional[bool] = False,
|
| 177 |
+
):
|
| 178 |
+
cl.run_sync(
|
| 179 |
+
cl.Message(
|
| 180 |
+
content=f'*Sending message to "{recipient.name}"*:\n\n{message}',
|
| 181 |
+
author=self.name,
|
| 182 |
+
).send()
|
| 183 |
+
)
|
| 184 |
+
super(ChainlitUserProxyAgent, self).send(
|
| 185 |
+
message=message,
|
| 186 |
+
recipient=recipient,
|
| 187 |
+
request_reply=request_reply,
|
| 188 |
+
silent=silent,
|
| 189 |
+
)
|
| 190 |
+
|
| 191 |
+
config_list = autogen.config_list_from_dotenv(
|
| 192 |
+
dotenv_file_path='.env',
|
| 193 |
+
model_api_key_map={
|
| 194 |
+
"gpt-3.5-turbo": "OPENAI_API_KEY",
|
| 195 |
+
},
|
| 196 |
+
filter_dict={
|
| 197 |
+
"model": {
|
| 198 |
+
"gpt-3.5-turbo",
|
| 199 |
+
}
|
| 200 |
+
}
|
| 201 |
+
)
|
| 202 |
+
|
| 203 |
+
@cl.action_callback("confirm_action")
|
| 204 |
+
async def on_action(action: cl.Action):
|
| 205 |
+
if action.value == "everything":
|
| 206 |
+
content = "everything"
|
| 207 |
+
elif action.value == "top-headlines":
|
| 208 |
+
content = "top_headlines"
|
| 209 |
+
else:
|
| 210 |
+
await cl.ErrorMessage(content="Invalid action").send()
|
| 211 |
+
return
|
| 212 |
+
|
| 213 |
+
prev_msg = cl.user_session.get("url_actions") # type: cl.Message
|
| 214 |
+
if prev_msg:
|
| 215 |
+
await prev_msg.remove_actions()
|
| 216 |
+
cl.user_session.set("url_actions", None)
|
| 217 |
+
|
| 218 |
+
await cl.Message(content=content).send()
|
| 219 |
+
|
| 220 |
+
@cl.on_chat_start
|
| 221 |
+
async def on_chat_start():
|
| 222 |
+
OPENAI_API_KEY = os.getenv('OPENAI_API_KEY')
|
| 223 |
+
|
| 224 |
+
|
| 225 |
+
try:
|
| 226 |
+
# app_user = cl.user_session.get("user")
|
| 227 |
+
# await cl.Message(f"Hello {app_user.username}").send()
|
| 228 |
+
# config_list = config_list_from_json(env_or_file="OAI_CONFIG_LIST")
|
| 229 |
+
llm_config = {"config_list": config_list, "api_key": OPENAI_API_KEY, "seed": 42, "request_timeout": 60, "retry_wait_time": 60}
|
| 230 |
+
proof_reader = ChainlitAssistantAgent(
|
| 231 |
+
name="Proof_Reader", llm_config=llm_config,
|
| 232 |
+
system_message="""Proofreader. Focuses on grammatical accuracy and stylistic refinement, ensuring that articles meet Medium.com's standards.
|
| 233 |
+
Enhances clarity and coherence while maintaining a conversational, likable tone akin to Morgan Freeman's speech style.
|
| 234 |
+
Assures the use of effective hooks and whitespace management to keep the reader's attention.
|
| 235 |
+
Ensures articles are straightforward, concise, and free of filler words, with minimal use of humor and sarcasm."""
|
| 236 |
+
)
|
| 237 |
+
writer = ChainlitAssistantAgent(
|
| 238 |
+
name="Writer", llm_config=llm_config,
|
| 239 |
+
system_message="""Writer. Develops SEO-optimized, engaging content tailored for Medium.com's audience interested in AI & Machine Learning.
|
| 240 |
+
Writes with a conversational and likable tone, ensuring simplicity and engagement.
|
| 241 |
+
Crafts impactful, concise titles and subheadings, with titles of 5-9 words incorporating numbers, and negative or neutral tones.
|
| 242 |
+
Structures content with effective subheadings and bullet points to facilitate reader understanding and engagement."""
|
| 243 |
+
)
|
| 244 |
+
narrative_designer = ChainlitAssistantAgent(
|
| 245 |
+
name="Narrative_Designer", llm_config=llm_config,
|
| 246 |
+
system_message="""Narrative Designer. Structures the article to maintain engagement and curiosity, using questions, action words, and numbers in subheadings.
|
| 247 |
+
Collaborates with the Writer and Emotional Impact Strategist to ensure the narrative is clear, concise, and resonates with the target audience.
|
| 248 |
+
Advises on the narrative flow to maintain reader interest and optimize for SEO."""
|
| 249 |
+
)
|
| 250 |
+
stylist = ChainlitAssistantAgent(
|
| 251 |
+
name="Style_Specialist", llm_config=llm_config,
|
| 252 |
+
system_message="""Style Specialist. Refines tone and style to be conversational and likable, aligning with the Morgan Freeman style.
|
| 253 |
+
Ensures the use of effective rhetoric, including minimal humor and sarcasm, to enhance readability and engagement.
|
| 254 |
+
Collaborates with the Writer and Proofreader to ensure stylistic consistency throughout the article."""
|
| 255 |
+
)
|
| 256 |
+
emotional_impact_strategist = ChainlitAssistantAgent(
|
| 257 |
+
name="Emotional_Strategist", llm_config=llm_config,
|
| 258 |
+
system_message="""Develops strategies for titles and subheadings that are impactful, concise, and evoke curiosity.
|
| 259 |
+
Advises on incorporating emotional cues that resonate with the audience's interests in AI and Machine Learning.
|
| 260 |
+
Collaborates with the Narrative Designer and Style Specialist to ensure a unified approach in content framing.
|
| 261 |
+
"""
|
| 262 |
+
)
|
| 263 |
+
user_proxy = ChainlitUserProxyAgent(
|
| 264 |
+
name="User_Proxy",
|
| 265 |
+
human_input_mode="ALWAYS",
|
| 266 |
+
llm_config=llm_config,
|
| 267 |
+
# max_consecutive_auto_reply=3,
|
| 268 |
+
# is_termination_msg=lambda x: x.get("content", "").rstrip().endswith("TERMINATE"),
|
| 269 |
+
code_execution_config=False,
|
| 270 |
+
system_message="""User Proxy. Provides feedback on the article's effectiveness in engaging readers interested in AI and Machine Learning.
|
| 271 |
+
Ensures the article meets overall objectives and resonates with the intended audience.
|
| 272 |
+
Relays audience and management preferences to the team for necessary adjustments."""
|
| 273 |
+
)
|
| 274 |
+
|
| 275 |
+
cl.user_session.set(USER_PROXY_NAME, user_proxy)
|
| 276 |
+
cl.user_session.set(PROOF_READER, proof_reader)
|
| 277 |
+
cl.user_session.set(WRITER, writer)
|
| 278 |
+
cl.user_session.set(STYLIST, stylist)
|
| 279 |
+
cl.user_session.set(NARRATIVE_DESIGNER, narrative_designer)
|
| 280 |
+
cl.user_session.set(EMOTIONAL_STRATEGIST, emotional_impact_strategist)
|
| 281 |
+
|
| 282 |
+
doc = cl.Action( name="doc", value="doc", label="Document" )
|
| 283 |
+
no_doc = cl.Action( name="no_doc", value="no_doc", label="NoDocument" )
|
| 284 |
+
idea = cl.Action( name="Idea", value="Idea", label="Idea" )
|
| 285 |
+
no_idea = cl.Action( name="NoIdea", value="NoIdea", label="NoIdea" )
|
| 286 |
+
idea_actions = [idea, no_idea]
|
| 287 |
+
doc_actions = [doc, no_doc]
|
| 288 |
+
|
| 289 |
+
IDEA_option = cl.AskActionMessage(
|
| 290 |
+
content="Hi, let’s generate some Article ideas. Would you like to generate ideas from Reddit, or continue?",
|
| 291 |
+
actions=idea_actions,
|
| 292 |
+
)
|
| 293 |
+
await IDEA_option.send()
|
| 294 |
+
|
| 295 |
+
IDEA_option = IDEA_option.content.split()[-1]
|
| 296 |
+
if IDEA_option == "Idea":
|
| 297 |
+
print("Using document...")
|
| 298 |
+
TOPIC = None
|
| 299 |
+
while TOPIC is None:
|
| 300 |
+
TOPIC = await cl.AskUserMessage(content="What topic would you like to make an Article about? [Only send one keyword.]", timeout=180).send()
|
| 301 |
+
|
| 302 |
+
print("Topic: ", TOPIC['content'])
|
| 303 |
+
msg = cl.Message(
|
| 304 |
+
content=f"Processing data from Reddit...", disable_human_feedback=True
|
| 305 |
+
)
|
| 306 |
+
await msg.send()
|
| 307 |
+
|
| 308 |
+
articles = grab_articles(TOPIC['content'])
|
| 309 |
+
msg = cl.Message(
|
| 310 |
+
content=f"Content from Reddit loaded: \n{articles}", disable_human_feedback=True
|
| 311 |
+
)
|
| 312 |
+
await msg.send()
|
| 313 |
+
elif IDEA_option == "NoIdea":
|
| 314 |
+
article_path = "articles.txt"
|
| 315 |
+
articles = load_articles(article_path)
|
| 316 |
+
print("Articles grabbed.")
|
| 317 |
+
|
| 318 |
+
msg = cl.Message(content=f"Processing `{articles}`...", disable_human_feedback=True, author="User_Proxy")
|
| 319 |
+
await msg.send()
|
| 320 |
+
|
| 321 |
+
cl.user_session.set(ARTICLES, articles)
|
| 322 |
+
print("Articles set...")
|
| 323 |
+
|
| 324 |
+
msg = cl.Message(content=f"""This is the Article Generation Team, please give a topic to create an Article about.""",
|
| 325 |
+
disable_human_feedback=True,
|
| 326 |
+
author="User_Proxy")
|
| 327 |
+
await msg.send()
|
| 328 |
+
|
| 329 |
+
except Exception as e:
|
| 330 |
+
print("Error: ", e)
|
| 331 |
+
pass
|
| 332 |
+
|
| 333 |
+
@cl.on_message
|
| 334 |
+
async def run_conversation(message: cl.Message):
|
| 335 |
+
#try:
|
| 336 |
+
MESSAGE = message.content
|
| 337 |
+
print("Task: ", MESSAGE)
|
| 338 |
+
proof_reader = cl.user_session.get(PROOF_READER)
|
| 339 |
+
user_proxy = cl.user_session.get(USER_PROXY_NAME)
|
| 340 |
+
writer = cl.user_session.get(WRITER)
|
| 341 |
+
stylist = cl.user_session.get(STYLIST)
|
| 342 |
+
narrative_designer = cl.user_session.get(NARRATIVE_DESIGNER)
|
| 343 |
+
emotional_impact_strategist = cl.user_session.get(EMOTIONAL_STRATEGIST)
|
| 344 |
+
articles = cl.user_session.get(ARTICLES)
|
| 345 |
+
|
| 346 |
+
groupchat = autogen.GroupChat(agents=[user_proxy, proof_reader, writer,stylist, narrative_designer,emotional_impact_strategist ], messages=[], max_round=50)
|
| 347 |
+
manager = autogen.GroupChatManager(groupchat=groupchat)
|
| 348 |
+
|
| 349 |
+
print("Initiated GC messages... \nGC messages length: ", len(groupchat.messages))
|
| 350 |
+
|
| 351 |
+
if len(groupchat.messages) == 0:
|
| 352 |
+
message = f"""Use this content as background for the articles you will make: {articles}.
|
| 353 |
+
First create 10 ideas, then 5, then 3, then 1.
|
| 354 |
+
Finalize the ideas with the planner and make sure to follow the criteria of choosing based on: "What will be the most dramatic, emotional and entertaining idea".
|
| 355 |
+
Do not express gratitude in responses.
|
| 356 |
+
\nThe topic of the article will be about: """ + MESSAGE + """The final output should look like: \n""" + CONTEXT
|
| 357 |
+
await cl.Message(content=f"""Starting agents on task of creating a Article...""").send()
|
| 358 |
+
await cl.make_async(user_proxy.initiate_chat)( manager, message=message, )
|
| 359 |
+
else:
|
| 360 |
+
await cl.make_async(user_proxy.send)( manager, message=MESSAGE, )
|
| 361 |
+
|
| 362 |
+
# except Exception as e:
|
| 363 |
+
# print("Error: ", e)
|
| 364 |
+
# pass
|
articles.txt
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
[Topic to help the Article generation]
|
chainlit.md
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Autogen Article Generator
|
| 2 |
+
|
| 3 |
+
This is an example of using the chainlit chat interface with multi-agent conversation between agents to make sophisticated articles.
|
newsAPI.py
ADDED
|
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import requests
|
| 2 |
+
import json
|
| 3 |
+
from dotenv import load_dotenv
|
| 4 |
+
import os
|
| 5 |
+
|
| 6 |
+
load_dotenv()
|
| 7 |
+
|
| 8 |
+
API_KEY = 'NEWSAPI_API_KEY'
|
| 9 |
+
|
| 10 |
+
# Functions ------------------------------------------------------------------------------------------------------------->
|
| 11 |
+
def extract_article_info_from_list(article_list):
|
| 12 |
+
try:
|
| 13 |
+
# Initialize a string to store the extracted information
|
| 14 |
+
extracted_info = ""
|
| 15 |
+
|
| 16 |
+
# Extract and store the desired information for each article
|
| 17 |
+
for article in article_list:
|
| 18 |
+
description = article.get("description", "N/A")
|
| 19 |
+
title = article.get("title", "N/A")
|
| 20 |
+
author = article.get("author", "N/A")
|
| 21 |
+
content = article.get("content", "N/A")
|
| 22 |
+
|
| 23 |
+
# Append the information to the string
|
| 24 |
+
extracted_info += f"Title: {title}\nAuthor: {author}\nDescription: {description}\nContent: {content}\n\n"
|
| 25 |
+
|
| 26 |
+
return extracted_info
|
| 27 |
+
|
| 28 |
+
except Exception as e:
|
| 29 |
+
# Handle any exceptions
|
| 30 |
+
return f"An error occurred: {str(e)}"
|
| 31 |
+
|
| 32 |
+
def grab_articles(url, **kwargs):
|
| 33 |
+
response = requests.get(url, 5)
|
| 34 |
+
|
| 35 |
+
if response.status_code == 200:
|
| 36 |
+
extracted_article = extract_article_info_from_list(response.json()['articles'])
|
| 37 |
+
print(extracted_article)
|
| 38 |
+
return extracted_article
|
| 39 |
+
else:
|
| 40 |
+
raise Exception(f"Error: {response.status_code}, {response.text}")
|
| 41 |
+
|
| 42 |
+
# URL Configuration Here ------------------------------------------------------------------------------------------------------------->
|
| 43 |
+
|
| 44 |
+
BASE_URL_EVERYTHING = 'https://newsapi.org/v2/everything?'
|
| 45 |
+
BASE_URL_TOP_HEADLINES = 'https://newsapi.org/v2/top-headlines?'
|
| 46 |
+
TOPIC = 'bitcoin'
|
| 47 |
+
FROM = '2023-01-08' # Starting date
|
| 48 |
+
TO = '2023-11-08' # Ending date
|
| 49 |
+
SORTBY = 'popularity' # Relevancy, Popularity, PublishedAt
|
| 50 |
+
DOMAINS = 'techcrunch.com, thenextweb.com' # Domains you want to use.
|
| 51 |
+
COUNTRY = 'gb&' # Options: US, AU, JP, PH etc.
|
| 52 |
+
SOURCES = 'bbc-news'
|
| 53 |
+
CATEGORY = 'business' # Options: business, entertainment, general health, science, sports, technology
|
| 54 |
+
|
| 55 |
+
# Everything URL list
|
| 56 |
+
urls_everything = f"{BASE_URL_EVERYTHING}q={TOPIC}&domains={DOMAINS}&sortBy={SORTBY}&apiKey={API_KEY}"
|
| 57 |
+
|
| 58 |
+
# Top Headlines URL list
|
| 59 |
+
urls_top_headlines = f"{BASE_URL_TOP_HEADLINES}topic={TOPIC}&country={COUNTRY}&category={CATEGORY}&sources={SOURCES}&apiKey={API_KEY}"
|
redditAPI.py
ADDED
|
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import requests
|
| 2 |
+
from dotenv import load_dotenv
|
| 3 |
+
import os
|
| 4 |
+
|
| 5 |
+
load_dotenv()
|
| 6 |
+
|
| 7 |
+
access_token = os.getenv('REDDIT_ACCESS_TOKEN')
|
| 8 |
+
|
| 9 |
+
headers = {
|
| 10 |
+
'Authorization': f'bearer {access_token}',
|
| 11 |
+
'User-Agent': 'MyAPI/0.0.1'
|
| 12 |
+
}
|
| 13 |
+
|
| 14 |
+
# Subreddits of interest.
|
| 15 |
+
subreddits = [
|
| 16 |
+
'artificialintelligence', 'machinelearning', 'indiehacking',
|
| 17 |
+
]
|
| 18 |
+
|
| 19 |
+
# Function to fetch top 3 comments from a post
|
| 20 |
+
def fetch_top_comments(post_id):
|
| 21 |
+
url = f'https://oauth.reddit.com/comments/{post_id}'
|
| 22 |
+
response = requests.get(url, headers=headers)
|
| 23 |
+
if response.status_code == 200:
|
| 24 |
+
post_data = response.json()
|
| 25 |
+
comments = post_data[1]['data']['children']
|
| 26 |
+
top_comments = [comment['data']['body'] for comment in comments[:1]] # Get top 3 comments
|
| 27 |
+
return top_comments
|
| 28 |
+
else:
|
| 29 |
+
return []
|
| 30 |
+
|
| 31 |
+
def grab_articles(topic):
|
| 32 |
+
data = []
|
| 33 |
+
print("Topic: ", topic)
|
| 34 |
+
for subreddit in subreddits:
|
| 35 |
+
# Search for the topic within each subreddit. Increase limit to get more posts.
|
| 36 |
+
search_url = f'https://oauth.reddit.com/r/{subreddit}/search?q={topic}&restrict_sr=on&sort=hot&limit=1'
|
| 37 |
+
res = requests.get(search_url, headers=headers)
|
| 38 |
+
|
| 39 |
+
if res.status_code == 200:
|
| 40 |
+
posts_data = res.json()['data']['children']
|
| 41 |
+
|
| 42 |
+
for post in posts_data:
|
| 43 |
+
post_data = post['data']
|
| 44 |
+
post_id = post_data['id']
|
| 45 |
+
title = post_data['title']
|
| 46 |
+
selftext = post_data['selftext']
|
| 47 |
+
top_comments = fetch_top_comments(post_id)
|
| 48 |
+
data.append({
|
| 49 |
+
'subreddit': subreddit,
|
| 50 |
+
'title': title,
|
| 51 |
+
'post_content': selftext,
|
| 52 |
+
'top_comments': top_comments
|
| 53 |
+
})
|
| 54 |
+
else:
|
| 55 |
+
print(f"Failed to fetch data from {subreddit}")
|
| 56 |
+
|
| 57 |
+
# Example output
|
| 58 |
+
print(data)
|
| 59 |
+
return data
|
requirements.txt
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
chainlit==0.7.501
|
| 2 |
+
pyautogen==0.1.13
|
| 3 |
+
python-dotenv==1.0.0
|
| 4 |
+
requests==2.31.0
|
| 5 |
+
langchain==0.0.322
|